Matek próbaérettségi 2019 megoldások
“A” menü:
MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT
1 Matematika Próbaérettségi Megoldókulcs 016. január 16. MATEMATIKA PRÓBAÉRETTSÉGI MEGOLDÓKULCS KÖZÉPSZINT I. rész: Az alábbi 1 feladat megoldása kötelező volt! 1) Egyszerűsítse a következő kifejezést: Válaszát indokolja! a ba b a b a b ab ab a b a b ab : b a ab : b a ab a b ab a b, ahol ) Oldja meg a következő egyenletet a valós számok halmazán! Válaszát indokolja! 8 x 18 3 x 3 x x 8 18 Az exponenciális függvény szigorú monotonitása miatt. 3x x 6 a b és ab, 0! (3 pont) 1 (3 pont) Összesen: 3 pont (3 pont) Összesen: 3 pont – 1 –
2 Matematika Próbaérettségi Megoldókulcs 016. január 16. 3) Juditot az ebédszünet után az alábbi üzenet fogadta az asztalán, a munkahelyén: Kedves Judit! Kérlek, vegyél 45 db csipogót a boltban! A délelőtti vásárláskor kiderült, hogy forint kevés a megvételükre, és megtudtuk, hogy a 45 darab forintba fog kerülni. Ezek a holnapi tanácsülésre kellenek majd, pénzt találsz a fiókban. Segítségedet előre is köszönöm, Dávid X991Y Sajnos az összeg első és utolsó számjegye elmosódott. Mennyibe kerül a 45 darab csipogó? Válaszát indokolja! ( pont) Egy szám akkor osztható 45-tel, ha 5-tel és 9-cel is osztható. Az 5-tel való oszthatóság akkor teljesül, ha a szám 5-re vagy 0-ra végződik. A 9-cel való oszthatóság feltétele pedig, hogy a számjegyek összegének oszthatónak kell lennie 9-cel. I. eset: Y 5; X II. eset: Mivel csak a II. esetben teljesül, hogy a 45 db csipogó drágább, mint 50000, ezért a lesz a megoldásunk. Összesen: pont Y 0; X ) Mekkora a derékszögű trapéz magassága, ha az alapjai 4 és 8 cm, a hosszabbik szára pedig 5 cm hosszú? 4 cm ( pont) m cm ( pont). 4 cm 4 cm Összesen: pont 5) Adja meg az illetve az halmaz elemeit, ha az A halmaz az egyjegyű prímszámok, a B halmaz pedig a 0 pozitív osztóinak halmaza! ( pont) A B ; 3; 5; A\ B 1; ; 4; 5; 10;0 A\ B 3; AB ; 5 A B m 5 cm Összesen: pont – –
3 Matematika Próbaérettségi Megoldókulcs 016. január 16. 6) Határozza meg y értékét úgy, hogy az egymásra! a 3; 4 és a b ; y Két vektor akkor, és csak akkor merőleges egymásra, ha a skalárszorzatuk y 0 vektorok merőlegesek legyenek ( pont) y 3 ) Adja meg a valós számok halmazán értelmezett értékkészletét! A koszinusz függvény értékkészlete: 1; 1 f x 3 cos x Összesen: pont függvény ( pont) A cos x függvénynek ugyanez az értékkészlete. A miatt a függvényt az y tengely mentén negatív irányba tolom 3 egységgel, így az új értékkészlet: 3 y 4; Összesen: pont 8) Rajzoljon egy olyan 8 csúcsú egyszerű gráfot, melyben a fokszámok összege 4, és van izolált, illetve elsőfokú pontja is! (3 pont) A fokszámok összege 4. Van izolált pont. Van elsőfokú pont. (Más megoldás is elfogadható.) (5) () (6) (0) (3) (3) (4) (1) 9) Oldja meg a következő egyenletet a természetes számok halmazán! Válaszát indokolja! x 5 6 Összesen: 3 pont (3 pont) x 5 6 x 5 6 I. eset: x 5 x 5 6 x 1 1 II. eset: x 5 x 5 6 x Összesen: 3 pont – 3 –
4 Matematika Próbaérettségi Megoldókulcs 016. január ) Adja meg a következő sokaság: 10, 11, 1. 9, 98, 99 átlagát és mediánját! (3 pont) A sokaság eleminek az összege: Átlag: ,5 A sokaság középső két eleme az 54 és az 55. Ezek számtani közepe a medián: Medián: ,5 Összesen: 3 pont 11) Egy gimnázium folyosóján 5 fiú és 5 lány szeretne leülni úgy egy hosszú padra, hogy az azonos neműek nem ülhetnek egymás mellé. Hányféleképpen tehetik ezt meg? (3 pont) I.eset: F L F L F L F L F L II.eset: L F L F L F L F L F Mivel számít a sorrend, a fiúk és a lányok külön-külön 5! féleképpen ülhetnek le. Együtt 5! 5! ként ülhetnek le. A leülés sorrendje kezdődhet fiúval illetve lánnyal is, ezt két külön esetnek számítjuk. Ezért a megoldásunk: 5! 5! ) Melyik hozzárendelési szabály felel meg az ábrán látható függvénynek? f : y 4x y g: x1 h : y x f : y 4x y x 1 ( pont) Összesen: 3 pont y g : x 1 y x h : y x y x A helyes hozzárendelési szabály: Összesen: pont h : y x Maximális elérhető pontszám: 30 pont y -1 x – 4 –
5 Matematika Próbaérettségi Megoldókulcs 016. január 16. II/A. rész: Az alábbi három példa megoldása kötelező volt! 13. a) Zsuzsi egy új könyvből elolvasott 0 oldalt. Elhatározta, hogy a következő napokban minden nap 10 oldallal fog többet olvasni, az előző napi adaghoz képest. Hány oldalas a könyv, ha 11 nap alatt olvassa ki, és a 11. napra már csak oldal maradt hátra? (4 pont) b) Dani ma kezdett el egy másik könyvet olvasni. Az 514 oldalas könyvből első nap 30 oldalt, majd minden nap az előző naphoz képest 10%-kal többet olvas el. Hány nap alatt olvassa ki a könyvet Dani? (4 pont) c) Dani és Zsuzsi találkoztak, és eladták a könyveiket Ft-ért. A kapott összeget bankba rakták 15 évre kamatozni. Mekkora az évi kamat, ha 15 év után Ft-ot vehetnek ki a bankból? (4 pont) a) Számtani sorozattal oldjuk meg a feladatot. A könyv oldalainak száma: a1 0 d 10 S 10 Felírva a számtani sorozat összegképletét: S Tehát Zsuzsi 65 oldalas könyvet olvas. b) Mértani sorozatként értelmezzük a feladatot. a1 30 q 1,1 Felírva az összegképletet, az alábbi egyenlőtlenséget kapjuk: n n q 1 1,1 1 n 40 Sn a ,1 q 1 1, Mindkét oldal 10-es alapú logaritmusát véve: n lg1,1 lg nlg1,1 lg lg 150 n 10,4 lg 1,1 Azaz 11 nap alatt olvassa ki a könyvet. c) A szöveg alapján a következő egyenletet írhatjuk fel: p p p , p 16,59% Tehát az éves kamat 16,59%. Összesen: 1 pont – 5 –
6 Matematika Próbaérettségi Megoldókulcs 016. január a) Oldja meg a következő egyenletet a természetes számok halmazán! log x log 9 3 b) Oldja meg a következő egyenlőtlenséget a a) Kikötés: x 0; x 1 3 x 5; 10 x x log 9 log x log 9 3 log x 3 a log x 3 3 x 3 3 log3 x a a a a a a ; a 1 log x 1 a log x 3 b) Kikötés: x x x 9 x 1 3 x 9 x1 x x 9x intervallumon! (6 pont) (6 pont) ( pont) Egy tört akkor nemnegatív, ha a számláló és a nevező előjele megegyezik vagy a számláló 0. I. eset: A számláló nemnegatív a nevező pozitív. x 6 és x 9 6 x 9 II. eset: A számláló és a nevező is negatív: nincs közös intervallum x 6 és x 9 A feladat szövegében lévő alapintervallummal összevetve a megoldás: 5;9 x Összesen: 1 pont – 6 –
7 Matematika Próbaérettségi Megoldókulcs 016. január a) Határozza meg annak az érintőnek az egyenletét, amely az egyenletű kört a 6; 3 b) Milyen hosszú húrt metsz ki a körből? x y 3 16 B pontban érinti! (4 pont) P 3; és a Q ; pontokon áthaladó egyenes a (8 pont) a) A kör középpontja: O ; 3 Mivel a sugár merőleges az adott pontba húzott érintőre, OB 6 ; 3 3 (4;0) 1;0 OB OB n Az érintő egyenes egyenlete: 1 x 0 y x lesz a normálvektor. b) A PQ vektor lesz az irányvektorunk, amit ha elforgatunk 90 -kal, megkapjuk a normálvektort. 5; 5 1; 1 1;1 PQ v n Q ; x y y x 5 pontban felírt egyenes egyenlete: (Vagy két ponton átmenő egyenes egyenletével) Behelyettesítjük a kör egyenletébe: x x x 4x 4 x 4x 4 16 x 4 x y Q ; 1 1 ( pont) x y 3 T ; 3 TQ ; 3 TQ 4; 4 TQ ,66 e Tehát 5,66 egység hosszú a húr. Összesen: 1 pont Maximális elérhető pontszám: 36 pont – –
8 Matematika Próbaérettségi Megoldókulcs 016. január 16. II/B. rész: Az alábbi három példa közül kettőt kellett megoldani! 16. a) Dóri és Anna társasestet tartanak. Az Itt a piros, hol a piros? -sal kezdenek, azonban kicsit nehezítenek a játékon. Dóri egy piros és két fehér golyót helyez el 3 egyforma, fekete dobozba úgy, hogy mindegyikbe csak egy golyót tesz, amiket ezután fiókban helyez el. Mekkora a valószínűsége annak, hogy ha Anna találomra kihúz egy fiókot, akkor a piros golyót tartalmazó dobozt veszi ki, ha a keresett doboz egymagában van a fiókban? ( pont) b) Az est folyamán egy olyan szabályos játékkockával is játszanak, amelynek egyik oldalán 0, két oldalán -es, három oldalán pedig 4-es szerepel. A kockát ötször feldobják, és az eredményeket a dobott sorrendben leírják egy lapra. Hányféle 6-tal osztható ötjegyű számot kaphatnak eredményül? ( pont) c) Kockajáték után a 3 lapos magyar kártyát veszik elő. Mind a két lány nyolc lapot kap. Mekkora a valószínűsége annak, hogy Anna kezében legalább makk van? (Egy pakli magyar kártyában 4 darab szín van, illetve 8 darab figura minden színből.) (6 pont) d) Tagadja a következő állítást! Mindig Dóri nyer. ( pont) a) Mivel a doboz egymagában áll a fiókban, csak azt kell vizsgálni, mennyi a valószínűsége, hogy eltalálja a fiókot. Mivel fiók van a keresett valószínűség 0,5. ( pont) b) Egy szám akkor osztható 6-tal, ha osztható -vel és 3-mal. -vel akkor osztható, ha páros. Mivel most mindegyik szám páros, ezért ez biztosan teljesülni fog. 3-mal akkor osztható egy szám, ha a számjegyeinek összege osztható 3-mal. Kedvező esetek: 4! ;;;0;0 6!! Csak kettessel kezdődhet az ötjegyű szám, így a maradék négy számjegy sorrendjét meghatározzuk ismétléses permutációval. 4! 4;4;4;0;0 6!! Csak négyessel kezdődhet az ötjegyű szám, így a maradék négy számjegy sorrendjét meghatározzuk ismétléses permutációval. 4! 4;4;;;0 4! Csak négyessel vagy kettessel kezdődhet az ötjegyű szám, így a maradék négy számjegy sorrendjét szintén ismétléses permutációval határozhatjuk meg. 4! 4;;0;0;0 8 3! Csak négyessel vagy kettessel kezdődhet az ötjegyű szám, így a maradék négy számjegy sorrendjét szintén ismétléses permutációval határozhatjuk meg. 5! 4;;;; 5 4! 5! 4;4;4;4; 5 4! (4 pont) Az összes eset: Tehát 54 féle ötjegyű számot kaphatnak
9 Matematika Próbaérettségi Megoldókulcs 016. január 16. c) A valószínűségszámítás klasszikus képletét alkalmazva: kedvező kedvezőtlen P 1 összes összes Összes eset: Kedvezőtlen esetek: 0 vagy 1 darab makk van a kezében: P ; ( pont) =0,6668 Tehát a keresett valószínűség 0,6668. d) Tagadás: Van olyan, hogy Dóri nem nyer. vagy Nem mindig nyer Dóri. ( pont) Összesen: 1 pont 1. Pali egy olyan 6 m oldalú négyzet alapú kisházat vett, aminek a tetőterét beépítették, a falakat megemelték 100 cm-rel, majd arra emelték az egyenes gúla alakú tetőt, így a tetőtér teljes magassága 5 m (lásd ábra). 5 m 100 cm. 6 m a) Mekkora a beépített tetőtér légtere? (4 pont) b) Egy bizonyos szabvány szerint hasznos alapterület -nek az minősül, melynek belmagassága legalább 1, m. Mekkora ennek a tetőtérnek a hasznos alapterülete? (6 pont) c) Pali szeretné felújítani a tetőteret, így az alapnégyzetet parkettázni, a többi belső felületet festeni fogja. Egy m parketta ára 900 Ft, egy m -re jutó festék ára 860 Ft. (A nem befesthető területek összessége 8 m.) A parkettázásban Pisti segített egy kisebb összeg fejében, azonban a festést már egyedül végezte. Miután befejeződtek a munkálatok, azt vette észre, hogy a teljes parkettázásra fordított összeg éppen kétszerese a festésre fordított összegnek. Mennyit fizetett Pistinek a segítségért? ( pont) a) A gúla magassága: A beépített tetőtér egy négyzetes hasábból és egy szabályos gúlából áll, tehát a térfogat: 6 4 V ( pont) A légtér tehát 84 m m 6 m – 9 –
10 Matematika Próbaérettségi Megoldókulcs 016. január 16. b) Hasonlóságot írhatunk fel a gúla síkmetszetében:, mivel két szöge biztosan egyenlő EFC ADC x 3 3 x 0,15 m 0, x 6 0,15 5, m 10 Az új alapterület: T ,49 m 100 ( pont) Tehát a hasznos alapterület 3,49 m. c) x Ft-ot kap Pisti. Ahhoz, hogy kiszámolhassuk a gúlát alkotó háromszögek területét, ki kell számolni a háromszögek magasságát: m o A festett terület T 4T T 8 téglatest oldallapja gúla palástja 65 T m A fizetendő összeg: Ft A parkettázott terület: 6 36 m A fizetendő összeg: Ft A szöveg alapján a következő egyenletet írhatjuk fel: x x 630 Ft Tehát Pali Pistinek 630 Ft-ot fizet. B x 4 A D 3 m o 0, E F x C Összesen: 1 pont
11 Fő Matematika Próbaérettségi Megoldókulcs 016. január a) Kinga és Timi Budapestről Siófokra utaznak a nyári nagy dugóban, a távolság 10 km. Kinga kocsival 0 km/h-val gyorsabban megy, mint Timi, aki vonattal utazik lefelé. Határozza meg, hogy Kinga mennyi idő alatt ér le Budapestről Siófokra, ha tudjuk, hogy Timi ugyanezt az utat 1 órával hosszabb idő alatt teszi meg! (5 pont) b) Siófokon a lányok munkába állnak egy olyan 100 fős cégnél, ahol a fizetések egy hónapban a következőképpen alakulnak: 60 A cég dolgozóinak fizetése Ft Ft Ft Ft Fizetés Határozza meg a dolgozók fizetésének szórását! Értelmezze a kapott eredményt! (5 pont) c) Timi fizetése Ft, Kingáé pedig Ft lesz a hónap végén. Hányszorosára változik a sokaság átlaga, ha a lányok fizetését is beleszámoljuk? (3 pont) d) Mekkora a valószínűsége annak, hogyha embert véletlenszerűen kiválasztunk a dolgozók közül (Timi és Kinga is már dolgozónak számít), akkor mindkét kiválasztott ember fizetése Ft? (4 pont) a) Az út – idő – sebesség összefüggést felhasználva: sk vk tk st vt tt A szöveg alapján az egyenletek átírhatóak így: 10 vt 0 tt 1 10 tt v T A második egyenletet behelyettesítve a következő másodfokú egyenletet írhatjuk fel: v T 0v T v Ez a megoldás nem lehetséges. T1 60 ( pont) vt 40 tt 3 tk tt 1 Tehát Kinga óra alatt ér le Siófokra
12 Matematika Próbaérettségi Megoldókulcs 016. január 16. b) Először is kiszámoljuk az átlagot: 100 Az átlag: A szórás képlete alapján: , , , , Ft 100 (3 pont) Értelmezés: Az átlagos Ft-os fizetéstől a dolgozók fizetése átlagosan 4104 Ft-tal tér el. c) Az új átlag: , ,9955 Azaz 0,9955-szeresére csökkent az átlagfizetés. d) A kedvező esetek száma: Az összes eset: A valószínűségszámítás klasszikus képlete alapján: 15 kedvező P összes 10 0,004 Tehát 0,004 a valószínűsége, hogy két Ft-os fizetésű dolgozót választunk ki véletlenszerűen. Összesen 1 pont Maximális elérhető pontszám: 34 pont A próbaérettségi során szerezhető maximális pontszám: 100 pont – 1 –
Érettségi-felvételi
Érettségi-felvételi
Próbaérettségi matekból: átmennétek a vizsgán, ha ma lenne?
Szombaton írták meg matekból a közép- és emelt szintű próbaérettségit azok, akik részt vettek a Studium Generale, a Budapesti Corvinus Egyetem hivatalos előkészítőjének próbaérettségi napján. Ha lemaradtatok róla, most megtudhatjátok, hol álltok a felkészülésben.
Nehezen jöttök ki a fizetésből és az ösztöndíjból? Hat appot mutatunk, amely segíthet beosztani a pénzt
Budapesten vagy vidéken drágább diplomát szerezni?
Profi tippek kezdő egyetemistáknak: így kezelhetitek a pénzügyeiteket okosa(bba)n
Fiataloknak szóló számlacsomagok 2022-ben
Ha szeretnétek kipróbálni magatokat a vizsgák előtt, akkor nincs más dolgotok, csak nyissátok meg vagy akár nyomtassátok ki a feladatokat, vegyétek elő a számológépet és a négyjegyű függvénytáblázatot, és – minden érettségi szabályt, időtartamot betartva – töltsétek ki a feladatsort. Végül görgessetek a cikk aljára a megoldásokért.
A középszintű matekérettségi első részét itt nézhetitek meg:
A második, hosszabb feladatokat tartalmazó részt pedig itt:
Ha emelt szinten tesztelnétek a matektudásotokat akkor itt nézhetitek meg a nehezebb feladatsort:
Ha mindent megoldottatok és leellenőriztetek, akkor pedig a megoldásokat nézhetitek meg középszinten és emelt szinten:
Matek próbaérettségi 2019 megoldások
Oldal kiválasztása
Kiadványok, rendelés
Rendelését a matematika@matekprobaerettsegi.hu e-mail címen adhatja le. A levélben kérjük, adja meg a rendelt kiadvány(ok) címét, darabszámát, valamint a számlázási és postázási adatokat.
Korábbi évek feladatlapjai és javítási-értékelési útmutatói
Országos Matematika Próbaérettségi feladatok és megoldások 2018/2019 | ||
---|---|---|
szerző: Varga Péter | ||
méret: A4 | ||
terjedelem: 120 oldal | ||
PDF betekintő középszint | PDF betekintő emelt szint | |
ár: 3990 Ft/db | ||
Országos Matematika Próbaérettségi feladatok és megoldások 2019/2020 | ||
szerző: Varga Péter | ||
méret: A4 | ||
terjedelem: 110 oldal | ||
PDF betekintő középszint | PDF betekintő emelt szint | |
ár: 3990 Ft/db | ||
Országos Matematika Próbaérettségi feladatok és megoldások 2020/2021 | ||
szerző: Varga Péter | ||
méret: A4 | ||
terjedelem: 100 oldal | ||
PDF betekintő középszint | PDF betekintő emelt szint | |
ár: 3990 Ft/db | ||
Országos Történelem Próbaérettségi feladatok és megoldások 2020/2021 | ||
szerző: Varga Péter | ||
méret: A4 | ||
terjedelem: 100 oldal | ||
PDF betekintő középszint | PDF betekintő emelt szint | |
ár: 3990 Ft/db |
Design: Fettech | © Ez a honlap az “Érettségit mindenkinek” Szolgáltató Bt. tulajdona.
Comments are closed, but trackbacks and pingbacks are open.