Press "Enter" to skip to content

Mozaik feladatgyűjtemény megoldókulcs 9. évfolyam

Folytonosság tétel és kör keresztmetszet átmérők segítségével kapjuk: . nyomja a fogászati nővérke, annak érdekében, hogy az injekciós tű végén a.

Mozaik Sokszínű Matematika Feladatgyűjtemény 9 Megoldások Pdf

Sokszínű matematika 9. – Megoldások – – Mozaik Digital Education and Learning Sokszínű matematika – középiskolás Testbook Mozaik Kiadó MS-2323M09 – Edition 1, 200 pages Authors: Árki Tamás, Konfárné Nagy Klára, Kovács István, Trembeczki Csaba, Urbán János Curriculum: NAT 2007 Further publications for Grade 9 Added to your cart.

Tankönyv, segédkönyv | Sokszínű matematika: Feladatgyűjtemény megoldásokkal 9. évfolyam /Mozaik/ | Madách könyvesbolt – Komárom

  1. MOZAIK KIADÓ könyvei – lira.hu online könyváruház
  2. Autó adásvételi szerződés hány példány
  3. Sokszínű matematika – tankönyv 9.osztály Kosztolányi József pdf – barsametab
  4. Egy mondat a zsarnokságról | Rezeda világa
  5. Mozaik sokszínű matematika 9 megoldások
  6. Fogd a nőt és ne ereszd! (1991) Online teljes film magyarul | Career Opportunities | onlinefilmek.es
  7. Hogyan hívható fel a telefonos ügyfélszolgálat külföldről?
  8. Ady endre karácsonyi rege szöveg full
  9. 13 hetes terhesség gyakori kérdések film
  10. Sorozatbarat meghivo szerzes webnode hu

Személyes ajánlatunk Önnek ÚJ MS-1674 Hétköznapi szövegértés 4. osztály – munkafüzet FÖLDVÁRI ERIKA Szállítás: 2-6 munkanap Könyv A munkafüzet olyan élethelyzetek megoldására készíti fel a kisdiákokat, amelyekben már önállóan kell helytállniuk, például a helyi közlekedés, vásárlás, könyvtárhasználat, biztonságos számítógép-használat. Az egymásra épülő feladatok megoldásával a gyerekek a. Olvasónapló – Rumini Bayné Bojcsev Mónika A regényhez készült olvasónapló segítséget nyújt a gyerekek számára a mű feldolgozásához. Az egymásra épülő, változatos és kreatív feladatsorok megoldásán keresztül megértik a mű eseményeit, a szereplők motivációját.

Sokszínű matematika – tankönyv 9.osztály Kosztolányi József pdf – barsametab

Megoldások – Háromszögek, négyszögek, sokszögek (1283-1474) 158 Néhány alapvető geometriai fogalom (pont, egyenes, sík, távolság, szög) 158 Háromszögek oldalai, szögei 160 Pitagorasz-tétel 163 Négyszögek 166 Sokszögek 170 Nevezetes ponthalmazok 173 Háromszög beírt és köré írt köre 178 Thalész tétele 182 Érintőnégyszög, érintősokszög 186 Vegyes feladatok 189 9. Megoldások – Egyenletek, egyenlőtlenségek, egyenletrendszerek (1475-1570) 196 Az egyenlet, azonosság fogalma 196 Az egyenlet megoldásának grafikus módszere 196 Az egyenlet értelmezési tartományának és értékkészletének vizsgálata 198 Egyenlet megoldása szorzattá alakítással 199 Egyenletek megoldása lebontogatással, mérlegelvvel 200 Egyenlőtlenségek 202 Abszolút értéket tartalmazó egyenletek, egyenlőtlenségek 205 Paraméteres egyenletek 207 Egyenletekkel megoldható feladatok 210 Egyenletrendszerek 215 Vegyes feladatok 217 9. Megoldások – Egybevágósági transzformációk (1571-1759) 220 Tengelyes tükrözés 220 Középpontos tükrözés 230 Háromszögek, négyszögek néhány jellegzetes vonala (súlyvonal, magasságvonal, középvonal) 237 Forgatás 245 Eltolás 256 Geometriai transzformációk 265 Vegyes feladatok 270 9.

angyal fogadó borászat szőlőbirtok rátka

Sokszínű matematika 9-10. feladatgyűjtemény – Letölthető megoldásokkal – Mozaik Digital Education and Learning

OSZTÁLY Ebben a munkában szeretne maximális segítséget biztosítani a Mozaik Kiadónál megjelenő, az 1–12. évfolyamot átfogó Sokszínű matematika tankönyvcsalád. Mivel a szerzők maguk is gyakorló matematika tanárok (a gimnáziumi könyvek írói: Kosztolányi József, Kovács István, Pintér Klára, dr. Urbán János Tankönyv. 7. évfolyam, 10. 07. 10. szerzők: Jakab Tamás, Kosztolányi József, Pintér Klára, Vincze István. kód: MS-2307. ára: 1 490 Ft. méret: B5, 368 oldal. OM engedélyszám: TKV/5457-5/2013. évfolyam, 5. 13. kód: MS-2309U. méret: B5, 276 oldal. tanterv: NAT2012. OM engedélyszám: Tankönyv. OM engedélyszám: Sokszínű matematika 9. Sokszínű matematika 12.

Mozaik feladatgyűjtemény megoldókulcs 9. évfolyam

9.2. Algebra s szmelmlet (1107-1193)Betk hasznlata a matematikban . 22Hatvnyozs, a szmok normlalakja . 22Egsz kifejezsek, nevezetes szorzatok, a szorzatt alakts mdszerei . 24Mveletek algebrai trtekkel . 26Oszthatsg, szmrendszerek . 28Vegyes feladatok . 31

9.3. Fggvnyek (1194-1282)A derkszg koordinta-rendszer, ponthalmazok . 32Lineris fggvnyek . 32Az abszoltrtk-fggvny . 34A msodfok fggvny . 37A ngyzetgykfggvny . 44Lineris trtfggvnyek . 47Az egszrsz-, a trtrsz- s az eljelfggvny . 51Vegyes feladatok . 52

9.4. Hromszgek, ngyszgek, sokszgek (1283-1474)Nhny alapvet geometriai fogalom (pont, egyenes, sk, tvolsg, szg) . 62Hromszgek oldalai, szgei . 64Pitagorasz-ttel . 67Ngyszgek . 70Sokszgek . 74Nevezetes ponthalmazok . 77

Hromszg bert s kr rt kre . 82Thalsz ttele . 86rintngyszg, rintsokszg . 90Vegyes feladatok . 93

9.5. Egyenletek, egyenltlensgek,egyenletrendszerek (1475-1570)Az egyenlet, azonossg fogalma . 100Az egyenlet megoldsnak grafikus mdszere . 100Az egyenlet rtelmezsi tartomnynak s rtkkszletnek vizsglata . 102Egyenlet megoldsa szorzatt alaktssal . 103Egyenletek megoldsa lebontogatssal, mrlegelvvel . 104Egyenltlensgek . 106Abszolt rtket tartalmaz egyenletek, egyenltlensgek . 109Paramteres egyenletek . 111Egyenletekkel megoldhat feladatok . 114Egyenletrendszerek . 119Vegyes feladatok . 121

9.6. Egybevgsgi transzformcik (1571-1759)Tengelyes tkrzs . 124Kzppontos tkrzs . 134Hromszgek, ngyszgek nhny jellegzetes vonala (slyvonal,

magassgvonal, kzpvonal) . 141Forgats . 149Eltols . 160Geometriai transzformcik . 169Vegyes feladatok . 174

9.7. Statisztika (1760-1807)Az adatok brzolsa . 189Az adatok jellemzse . 193Vegyes feladatok . 199

matematika_9_fgy_mo_2_kiadas_2010_jun.qxd 2010.06.11. 13:16 Page 3

MEGOLDSOK 9. VFOLYAM

9.1. KOMBINATORIKA, HALMAZOK

Szmoljuk ssze! megoldsok

w x1001 a) 2 2 2 = 8 b) 10, 6, 4, 2, 0, 2, 4, 8

w x1002 a) 4 b) 8, 4, 0, 4

w x1003 a) 6 b) 3, mgpedig a 2, 8 s 0.

w x1004 2 3 3 = 18

w x1005 3 4 4 2 = 96

w x1007 a) 3 2 1 3 = 18

w x1008 1 2 2 2 2 = 24 = 16

w x1009 2 2 2 2 2 = 25 = 32

w x1010 b) 3 2 1 = 6 c) 2

w x1011 a) A mozdonyokra 2 1, a kocsikra 5 4 3 2 1 = 120 lehetsge van egymstl fggetlenl.Ez sszesen 2 120 = 240.

b) Mozdonyt vlasztani most is 2 lehetsge van, utna pedig az els kocsit 5, a msodikat 4 jr-mbl vlaszthatja ki. gy sszesen 2 5 4 = 40-fle szerelvnyt llthat ssze.

w x1012 a) Mivel megklnbztetjk a helyeket, az olyan, mintha egyszer lineris sorba kellene tennnkhrom szemlyt. Vagyis a megolds 3 2 1 = 6.

b) Ha a szkeket nem klnbztetjk meg egymstl, akkor gy kell eljrnunk, mint a krberak-soknl ltalban. Vlasszuk ki egyikket, s vele kezdjk a sort. Az eredmny 2 1 = 2 lehetsg.(Nyilvn, ha A mr l, akkor B s C legfeljebb helyet cserlhetnek.)

c) Mivel sszesen hrman vannak, gy mindig mindegyikk szomszdja a msik kettnek. (Hrom-szgben minden cscs szomszdos.) Az eredmny teht 1.

w x1013 a) A halmazok elemeinek prostst sszesen3 2 1 = 6-flekppen vgezhetjk el. Az egyes hozzrendelsek sorn a kvet-kez fggvnyeket nyerjk:

b) A fggvnyek kzl f (x) s j(x) lineris (brzolva a pontokat, ezeket tudjuk egyetlen folyto-nos egyenessel sszektni). A szablyaik:

f (x) = 2x s j(x) = 2x + 8.

w x1014 a) Legyen a kt szn mondjuk piros (P) s fekete (F). A fels sor-als sor ekkor: PF-FP vagy FP-PF.Teht kt lehetsg van.

b) Legyen a hrom szn mondjuk piros (P), kk (K) s fekete (F). Ha a bal fels sarokba pl. P-trunk, akkor mell s al 2-2 lehetsg van a sor s oszlop kitltsre. Ha mondjuk a fels sorPFK, akkor brmit is runk a msodik sor els ngyzetbe, az utna levk mr meghatrozottak

x f(x) g(x) h(x) i(x) j(x) k(x)

(hiszen a harmadik sznt nem rhatjuk sajt maga al, oda P-t kell rni). Az utols sor minden-kppen eleve meghatrozott. Mivel a bal fels ngyzetet hromflekpp tlthetjk ki, gysszesen 3 2 2 = 12 lehetsgnk van a ngyzet sznezsre.

Megjegyzs: Ha elg trelmesek vagyunk, akr egyesvel is sszegyjthetjk a megoldsokat.rdemes j stratgit kitallni, hogy ne hagyjunk ki sznezst, illetve ne ksztsk el ktszer ugyanazt!

w x1015 a) A hts kt ajtt sszesen 3 helyzetbe mozgathatjuk. Ugyanis vagy egyms mellett vannaka jobb oldalon, vagy egyms mellett vannak a bal oldalon, vagy a kt szlen vannak.

b) Az a) krdsre adott vlasztl fggetlenl az els (tkrs) ajt 3 helyzetben lehet: jobboldalon, kzpen, bal oldalon. gy a vlasz: 3 3 = 32 = 9.

c) Az als rszen a fentihez hasonlan ismt 9 lehetsg van az ajtk belltsra. Mivel az alss a fels rsz egymstl fggetlenl llthat, ezrt a keresett rtk (3 3) (3 3) = 34 = 81.

w x1016 A feladatra kt megoldst is mutatunk.Rajzoljunk egy ABCD deltoidot, s irnytsuk a krt szakaszokat mondjuk A-tl.Legyen = , = , = . A + + vektorok sszeadsa tulajdonkppen egy tvonalatad meg. Mindegyik vektort ktfle irnnyal tekinthetjk. Mivel a deltoid AB s AD oldala, illetveAC tlja nem lehetnek prhuzamosak, gy a klnfle irnytsokkal sszesen nyolc klnbzpontba jutunk el (az eredeti irnytssal pldul a P pontba jutunk A-bl).

A msik megoldshoz jusson esznkbe, hogy valamely vektort ellenttesen irnytva vektortkapjuk! Ekkor a feladatot rtelmezhetjk a kvetkezkppen is: hnyflekppen oszthatjuk kia + s eljeleket az eredeti vektorsszegben: ? Mivel hrom helyre kella ktfle jelbl bernunk egyet-egyet, ezrt a megoldsok szma 2 2 2 = 8.Sajnos ennyivel mg nem fejezhetjk be a megoldsokat, diszkutlnunk is kell a feladatot. Ha ugyanisa deltoid rombusz, akkor + = . Ekkor elfordul, hogy klnbz eljelkiosztssal ugyanabbaa pontba jutunk: gy csak 7 klnbz megoldst kapunk.

Megjegyzs: A vektorok sszeadsa felcserlhet mvelet, ezrt , , sorrendjt nem kell figye-lembe vennnk a megolds sorn!

w x1017 a) Nem, mert nem egyrtelm. b) Igen.c) Igen. d) Nem, mert nincs rla informcink.e) Igen.

MEGOLDSOK 9. VFOLYAM

w x1019 A Venn-diagram az brn lthat. ( )

w x1020 a) Igen. b) Nem.c) Nem. d) Igen.

w x1021 a) Vgtelen sok ilyen szm van.b) 5 8 9 = 360

w x1022 Jellsek: sz: , kirly: k, fels: f, als: a. A ktelem rszhalmazok:, , , , , .

w x1024 A-ra vgtelen sok megolds adhat, a legszkebb: A = >.

w x1026 a) Igaz, hamis, igaz, igaz. b) Igen, az E halmaz. Nincs.c) Igen, az A halmaz s a C halmaz.

w x1027 a) R P igaz. b) P T igaz.c) Egyik sem igaz. d) Igaz, igaz, hamis, hamis, hamis, hamis, igaz.

w x1028 a) Krvonal. b) Futplya.c) Zrt sv. d) Lekerektett sark tglalap (t hozztartozik).

w x1029 a) Ha B-nek van olyan eleme, amely nem eleme A-nak, ugyanakkor nincs olyan elem, amelymindkt halmazban benne van.

b) Ha B-nek nincs olyan eleme, amely nem eleme A-nak, ugyanakkor nincs olyan elem, amelymindkt halmazban benne van, azaz ha B = .

c) A msodik halmaz rszhalmaza a harmadiknak.

w x1030 a) Gmbfellet.b) Nyitott gmbtest.c) Az AB szakaszt felez, r merleges sk.d) Hengerfellet, tengelye az e egyenes.

w x1032 a) A kitlttt tblzat:

b) A szmok a Pascal-hromszg soraibl valk. Ennek tdik sora: 1; 5; 10; 10; 5; 1.

w x1033 a) Mindenki kltzzn ttel nagyobb sorszm szobba! Ekkor felszabadul az els t szoba,gy oda be lehet kltztetni a csald mind az t tagjt.

b) Vgtelen sokszor vgtelen sok rkezt kell elszllsolnunk. Elszr is keressnk jl beazono-sthat vgtelen lncokat a termszetes szmok kztt. Ilyenek pldul a klnbz prm-hatvnyok: 21, 22, 23, 24, ; 31, 32, 33, ; 51, 52, 53, stb. A termszetes szmok kzttvgtelen sok prm van, s minden egyes prm hatvnyainak sorozatban is vgtelen sok elem van.Teht van hely a vgtelen sokszor vgtelen sok rkeznek, csak fel kell szabadtanunk a szo-bkat. Ehhez kldjk minden n-edik prmhatvny szoba lakjt a 2n-edik prm ugyanannyiadikhatvny szobba.Pldaknt tekintsk az 57 sorszm szoba lakjt. Ez a szobaszm a harmadik prm hetedikhatvnya, ezrt lakjnak a hatodik prm hetedik hatvnya sorszm szobba kell kltznie,azaz j szobaszma 137 lesz. s gy tovbb minden prmhatvny sorszm szobra. Ekkor resenmaradnak az sszes pratlanadik prmhatvny-lncolatban szerepl szm szobk, hiszen azokbanem kltzik senki. Oda kell bekltztetni az rkezket, mgpedig a kvetkezkppen:A buszok lsszma (pl. s5) jelentse a hatvnykitevt, a busz sorszma pedig azt, hogy hnyadiklncba kerl az utas a kvetkez formula szerint: az n-edik buszhoz tartozzon a (2n 1)-edikprm. Konkrt pldn: keressk meg, melyik szobba kell mennie a B4 jel busz 13. szknhelyet foglal utasnak. Szobaszma a (2 4 1) = 7-edik prm hatvnyainak lncolatbana 13. lncszem, vagyis a 13. hatvny. Mivel a hetedik prm a 17, gy a kedves vendg szmraa 1713 sorszm szoba lesz kiutalva.

0 elem rszhalmaz 1 1 1 1

1 elem rszhalmaz 1 2 3 4

2 elem rszhalmaz 1 3 6

3 elem rszhalmaz 1 4

4 elem rszhalmaz 1

MEGOLDSOK 9. VFOLYAM

w x1034 a) A szakasz mentn egy hengerpalst, a kt vgn pedig egy-egy flgmb. (Gygyszeres kap-szula.) Csak a fellet tartozik a halmazhoz!

b) A tglalappal prhuzamosan egy-egy vele egybevg tglalap (alatta s felette), oldalainl fl-hengerek, sarkainl pedig negyedgmbk. (Hasonlan, mint amikor a lgprns haj felfjjaa lgprnkat.) A megolds az egsz test, hatrol felletvel egytt.

c) Lekerektett szl tglatest, ahol a lapok egybevgak az eredeti lapjaival, oldallei negyedhen-gerek, sarkai nyolcadgmbk. (Rgi utazbrnd.) Csak a nyitott test tartozik a halmazhoz!

Megjegyzs: rdemes meggondolni, mennyiben vltoznak a fenti alakzatok, ha kiindulsul nemzrt, hanem nyitott (vagy flig nyitott) szakaszt, tglalapot, tglatestet adunk meg!

w x1036 a) Ngy: , , , . b) , A_

. Az is lehet, hogy a kett egybeesik, ha A = U.

w x1037 A D = ; B C = ; E D = ; E C = ; E B = ; E A = .

w x1038 a) A B = ; A B = ; A \ B = ; B \ A = .b) Brmely C halmaz, melynek rszhalmaza a .

w x1039 a) Komplementerek.b) (A \B) (B \ A) vagy (A B) \ (A B), vagy

b) A \ (B C) = .c) A Venn-diagram az brn lthat.

w x1041 a) A kt halmaz megegyezik. b) A kt halmaz megegyezik.c) Az els rszhalmaza a msodiknak.

Sokszínû matematika 9. A KITÛZÖTT FELADATOK EREDMÉNYE

3 Tartalom Kombinatorika, halmazok. Algebra és számelmélet. Függvének. 0 Háromszögek, négszögek, sokszögek. 7 Egenletek, egenlõtlenségek, egenletrendszerek. Egbevágósági transzformációk. Statisztika. 6

4 Kombinatorika, halmazok. Számoljuk össze.! = 0. SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. a)! = 6; b)! = ; c)! = 0; d) 6! = 70; e) 7! = 00.. a)!; b) ez nem lehet; c) ; d) = számjeget (0 db jegû, 90 db jegû, 900 db jegû, 00 db jegû).. Ez 000 db szám, és minden 0-edik -re végzõdik, íg 00 db. A második heli értéken 0 0 db, a harmadikon 00 db van. Összesen 00 db. 6. a) db -as 9-ig; b) 8 db -as 9-ig; c) 8 db -as -ig. 7. a) = 6; b) 96; c) 6; d) a) Ha a testeket elmozdíthatjuk, akkor kevesebb vágással is megoldhatjuk a feladatot. Két egiránú vágással elérhetjük, hog eg és két méretû téglatesthez jussunk. Egetlen vágással meg tudjuk felezni a két nagobb testet (és íg öt darab méretû téglatesthez jutunk), ha a felezendõ testeket a megfelelõ módon átrendezzük. Íg vágással elérjük, amit elõbb -gel tettünk meg. Összesen ++=9 vágással boldogulunk. Kevesebb vágás nem elég. Eg vágás után a nagobb test tartalmaz eg -as téglatestet. Ezt a részt kövessük és az átrendezéseinket mindig úg végezzük el, hog a követett test ne mozduljon (ezt megtethetjük). A követett test mindig a nagobbik maradék lesz. Az eges vágás által érintett oldalakra adható alsó becslés módon változik. Azaz valóban minden iránban legalább három vágásra szükség is van. b) + + = vágásra. Másképpen: Minden vágás eggel több testet ad. darab kis kockához vágás vezet el. c) = 7, melnek nincs; 6 =, melnek ; = 6 melnek és 8 olan, melnek piros lapja van. 6 piros lapot tartalmazó kis kocka nincs. 0. a) 7 különbözõ testet.. a) ; b) ; c) ; d).. Ákos 6 párnál ner, Zsombor párnál.. Gabi -féleképpen és Zsuzsi -féleképpen.. Kati 6-féleképpen, Dani 0-féleképpen.. Zsófi -féleképpen, Dorka -féleképpen.

6 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE c) d) A B A B e) A B 8. = féle összeget, a legnagobb 8 Ft. 9. a) igaz; b) hamis; c) igaz; d) igaz; e) igaz; f) hamis.. Halmazmûveletek. a) A = B = A Ç B = A È B = b) A = B = A Ç B = Æ A È B = U c) A = B = A Ç B = A È B = A d) A = B = A Ç B = A È B = e) A = B = A Ç B = B A È B = A f) A = B B = A A Ç B = Æ A È B = U 6

8 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. U A C 6 8 B a) A Ç B = b) A Ç B = c) A B= < ; ; ; ; ; ; >d) A B= A B e) A B f) A È B = g) A Ç B = A B = h) A È C = U i) B Ç C = j) B È C = k) (A Ç B) È C = l) (A È B) Ç C = m) (A Ç B) È C = C n) (A È B) Ç C = o) A B C = A B C = p) Æ. U A u i o e B a) hamis b) hamis c) igaz d) hamis e) igaz f) hamis g) igaz h) igaz a C 6. a) A = B = b) A = B = 7. a) b) A B A B 9 0 C C A = A = B = B = C = C = 0. a) igaz b) nem szükségszerûen igaz c) nem szükségszerûen igaz d) igaz. a) nem igaz b) nem igaz c) igaz d) igaz. a) nem szükségszerûen igaz b) igaz c) nem szükségszerûen igaz 8

9 . a) cm, a sárga és a kék terület uganakkora, hisz a metszettel kiegészítve uganakkora négzetet adnak. b) cm, a különbség 0 cm. Rejtvén: Nincs hiba, mindkét állítás lehet igaz egszerre, mivel nem állítja, hog két nelvet nem tanulhat valaki.. Halmazok elemszáma, logikai szita. a) 0 b) c) 8. a) b) c) 9. a) b) c) 9 d) 6. lépcsõfokot használnak pontosan ketten.. a) b) 6 c) d) 6. 0,8 = tanuló matematika szakkörre és kosarazni is jár. / 0, = 0 tanuló kosarazik. 7. Az elsõ és a második problémát legalább = 70 tanuló oldotta meg. A harmadik és negedik problémát legalább = 0 tanuló. Mivel ennek a két halmaznak nem lehet közös eleme, pontosan enni az elemszámuk. Tehát 0 tanuló nert díjat. 8. Barna szemû és sötét hajú tanuló legalább + 0 = 9 van. 0 kg-nál nehezebb és 60 cm-nél magasabb pedig =. Ezen két halmaz metszetében, azaz akik mind a nég tulajdonsággal rendelkeznek, legalább = tanuló van. 9. Mivel jeles tanuló, sportoló lán van a 0 sportoló lán között, a 6 nem jeles lán közül 8-nak kellene sportolnia, ami lehetetlen. 0. Akkor oldható meg, ha egetlen férj sem azonos magasságú, illetve súlú a feleségével. Legen a feleségüknél magasabb férjek száma. Íg a magasabb és nehezebb, a magasabb és könnebb és az alacsonabb és nehezebb férjek száma. Tehát 9 Innen = férj nehezebb és magasabb, mint a felesége = A = Megfelelõ öt halmaz: A = B = B = C = C = D = D = E = Öt darab elemû halmaz nem adható meg. 9

10 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. A = B = C = Rejtvén: H, E, A, B, C, F, Y, G, D a sorrend.. Számegenesek, intervallumok. a) b) c) 0 d) e) f) g) h) i) j) k) l) 0 0 0,, , 0 70, 0 0, a) b) c) 0 d) e) f) 0 g) h) , a) [ ; 6[ b) ] 6; 0] c) [0; 8] d) ] ; [ e) ]; 6]. a) Æ b) <> c) Æ d) [0; [ e) ] ; ] f) [0; ] 0 g) [ ; ] h) [ ; 0] 0. a) ]; [ b) ] 6; [ È ] ; [ È ]; 6[ c) ] 6; [ È ] ; [ È ]; [ È ]; 6[ a) b) c) 0 d) e) f) A Ç B = [ ; ] B Ç E = [ ; ] C Ç F = Æ A Ç F = Æ B È C = [ ; [

11 E Ç D = Æ A Ç C Ç D = [; [ B Ç F Ç C = Æ 0 8. a) igaz b) hamis c) hamis d) igaz e) igaz f) igaz Rejtvén: Például: 8 8 (8 + 8) ( ).

12 Algebra és számelmélet SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. Betûk használata a matematikában. a) -tel osztva maradékot adó pozitív egész számok. b) -tel osztva maradékot adó pozitív egész számok. c) Racionális számok.. Racionális számok.. m + ; m Î N.. ; 7, 8; ; 0, 6; ;. 7. a) a a a+ < b) a ; c) c c abc ab c+ c < b a a) ¹ 0; b) ¹ 0; c), ; d),, 0; e), 0. ab + 8ab a >a b; 7. a) 6; b) ; c) 9 d) ; e) 7 f) nincs értelmezve. ; 8. s = v t +(v ) (t +) 7 ; 9. a) A könvek száma: t k + m. b) A könvek száma: (t j) k. 0. a l t a f. Hatvánozás. a) > ( ) ; b) > ( ) ; 6 c) d) 6 = ( ) < ( ) = 0 ; = ; e) 9 9 = 9 < 9 = ; f) 6 = 6 < 00 7 =.

13 . a) 6000; b) ; c) d) 6 = 067; ; e) f) g) 9; h) ; ;. a) a 6 b ; b) a, a ¹ 0; c) ab, a és b ¹ 0; d), és ¹ 0; a e), és ¹ 0; f), a és b 0; g) a b, a és b ¹ 0. b. a) 000; b) ; c) ; d). Rejtvén: b =, c =, a = Hatvánozás egész kitevõre. a) b) c) 9; 8 ; 9 ; d) e) ; f) ; ; 7 g) h) i) ; ; b. a), a és b 0; b), 0; c) a 8 a d), a 0; e), a és b 0; f) b8 a 6 0. b, a és b 0; a 8, és 0; g) a b 8, a és b ¹ 0; h) 7, és ¹ 0.. a) ; b) 9 ; c) 8.. a) ; b) 0; c) ; d) 9; e) a) = > = b) ; = > = ; c) = > = 7 ( ) 6; d) Rejtvén: a =, b =, c =, d = = = 8 8.

14 . A számok normál alakja. 0 7 szemet tartalmaz.. 00 másodperc = perc ~ 8, perc.. 6, 0 elektron. SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE 6. A bolgók össztömege ~ kg =, kg. A Nap tömege kg. Az arán 0,%. Rejtvén: a = 0, b = 0, c =, d =.. Egész kifejezések (polinomok). 0,a b; d + ;,g g ; 8s t 7s t;.. a) + ; b) ; c) a b ab + b.. a) ; b) 6 +9; c) a b +6ab ab ; d) a a; e) ; f) a) 8a a; b) 6 9 +; c) 6a +a a; d) 6a +a 6; e) 6 8 +; f) a) a +a +; b) 9a a +9; c) 6a ; d) a + b +ab +a +b Az egütthatók összegét az = helettesítéssel kapjuk, ami. 6. Nevezetes szorzatok. a) 6a 60ab +b ; b) 00a +0ab +b ; c) ; d) ; e) a 8ab +8b 6 ; f) 6a 0a b +b 0 ; g) a + ab+ b; h) a) a +6b + c 6 +6ab +ac +8bc ; b) ; c) d) z 8 8z + z; 9 9 a + b + ab+ a b; e) a +9b +6c + d ab +6ac ad bc +6bd 8cd.

15 . a) ; b) 6a 6 96a b +8a b 8b ; c) ; d) ; e) a6+ ab+ ab+ b; f) a ab+ ab b a) 9 6 ; b) 9a b ; c) d) 6a ; 9; e),a 6 8b ; f) 6 9 a ; g) b ; h) 6.. a) ; b) + ; c) 0a b 80a +b +b ; 7 9 d) ; e) 9 6 a + a a) ( ) +; b) ( +6) +; c) d) + e) ( ) +; f) 7 ; 7 + ; a) a 8; b) b + 7; c) a) = ; b) (00 ) (00 + ) = = a) 900 = (0 + ) (0 ) = 9; b) 7778 = ( ) (7778 ) = 0 00 =. Rejtvén: = (6 760 ) ( ) = ; tehát < A szorzattá alakítás módszerei. a) ( + ); b) a b(a b); c) 0( ); d) 7 ( +); e) 6a b (a b + b +a ); f) 0( ).. a) (a b) ( ); b) (a +) ( + ); c) ( 7) (a b); d) (a +b) ( ); e) (6a b) ( +); f) ( +) ( ); g) 6a 9a +a = (a ) (a + ); h) (a + b) (a b) ( + ).

16 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. a) (8 ) ; b) ( + ) ; c) (a + 7b) (a 7b); d) + ; e) (7a +b) ; f) (a +) (a +) (a ); g) (6a b ) ; h) i) (a 8 +) (a +) (a +) (a +) (a ).. a) ( ) ; b) a (a +b) ; c) a b(b a ) ; d) ( 7) ( + ); e) ( +) ( ); f) ( +) ( + ).. a) ( + +) ( + + ); b) ( +) ( + +); c) ( + +) ( + ). Rejtvén: (; ); (9; 6); (; 0); (7; 8); (; 0). 7 ; 8. Mûveletek algebrai törtekkel. a), és 0; b) ( ), ± ; + c), ± ; d), ; + + e) + a +, és ; f), a és b. a 9ab a. a) ; b) c) 8 6 ; ( b + ) d) ; e) ; f) 6; b ( ) g) h). ( a b) ; + ( + ) ( + ) ( ) ; +. a), 0; b) a, a 0; a c) d) b + b + 6, b ; ( ), + ; ( b + ) 6

17 a a+ e) a ± f) ( a+ ) ( a ), ; 9 ( + ) g) ± h) ( + ) ( ), ; Rejtvén: az összeg 0. a a+ 98 a ± 7 ( a+ 7) ( a 7), ; ( ) ( ), ± Oszthatóság. Mivel 8½000, eg 000a + b (a; b ÎN) alakú szám akkor és csak akkor osztható 8-cal, ha 8½b.. A k + (k Î N) alakú számok -re végzõdnek, a 6-ra végzõdõ számok pozitív egész kitevõjû hatvánai pedig 6-ra. Íg a ra végzõdik, tehát osztható 0-zel.. Ak + (k Î N) alakú számok pozitív egész kitevõjû hatvánainak -as maradéka. Mindhárom alap ilen alakú, tehát az összeg osztható -mal.. a) Tudjuk, hog ½k Û ½k és ½k. ½ 7 Û = 0;. = 0: ½ 70 Û = ; ; 7. = : ½ 7 Û = ; ; 8.. 0a +6b = (a +b) + 7a. A feltétel miatt mindkét tag osztható 7-tel, íg az összeg is osztható. 6. Ha p =, akkor p + 7 = 9, mel nem prím. Ha p >, akkor páratlan, és p + 7 páros, tehát nem lehet prím. Tehát nincs ilen p prímszám. 7. Van, például p =. 8. a) a maradék; b) a maradék; c) 0 a maradék. 9. a) a maradék; b) vag a maradék nek osztója, 8-nak 0 osztója, 6-nak 7 osztója, -nek osztója, 00-nak osztója, 6-nek osztója van. A nem négzetszámoknak van páros számú osztója.. A 8 a legkisebb ilen szám. 7

18 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE 0. Legnagobb közös osztó, legkisebb közös többszörös 9. a) b) c) ; ;. Legközelebb 08 méter távolságra fordul elõ. 7.. Kétszer, 8.0-kor és.00-kor.. Igaz.. és 0, vag 70 és a = ; b = ; c = [a; b] = b és (a + b; b) = a. 8. a = 9; 8; 6; Tudjuk, hog 7½ és 60½. Íg a legkisebb ilen szám a Bontsuk fel a-t és b-t prímténezõs alakban. A közös ténezõk közül a kisebb kitevõjûek az (a; b)-ben, a nagobb kitevõjûek az [a; b]-ben, az azonos kitevõjûek mindkettõben szerepelnek. A nem közös ténezõk [a; b]-ben szerepelnek a bal oldalon. Íg a illetve b ténezõi közül mind szerepel a bal oldalon és más ténezõk nem. Tehát a két oldal egenlõ. Rejtvén: Mivel (a; b)½[a; b], (a; b)½a és (a; b)½b, ezért (a; b)½p. Tehát (a; b) = p vag (a; b) =. a) Ha (a; b) = p, akkor a = k p; b = l p; (k; l) = ; k, l Î Z +. Íg k l p + p = k p + l p + p, (k ) (l ) =. Ez nem lehet, hisz k = l = kellene legen. b) Ha (a; b) =, akkor [a; b] = a b. Íg a b + = a + b + p, (a ) (b ) = p. Az egik ténezõ, a másik p. Legen a = és b = p +. Ha (a; b) =, akkor p nem lehet páratlan, tehát p =. Tehát a =, b =, p =. 8

19 . Számrendszerek. a) 06 8 = = 8; b) 00 = = 89; c) 0 = = 77.. Mivel 00 6 = 876, és 60 8 = 876, ezért 00 6 > a) 7 = ; b) 7 = 00 ; c) 7 = = 0. a maradék a maradék. 7. a) ; b) 0 ; c) ; d) kg-tól 0 kg-ig bármekkora tömeget, melnek mérõszáma egész. Rejtvén: a =, b =, c =. 9

20 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE Függvének. A derékszögû koordináta-rendszer, ponthalmazok. E C A D F B. a) b) = = c) d) = = +. a) b) ³ 0

22 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE c) d) Rejtvén: a) 8 s b) 8! = 6. Lineáris függvének. a) b) c) f ()= + g ()= h ()= d) e) f) k ()= l ()= + m ()= g) n ()=. a) f( ) = +, m=, 0; b) f( ) =, m=, 0;

24 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE c) D h = R R h = [; ) ( ; ] szig. mon. csökkenõ h ()=½ ½+ [; ) szig. mon. növõ ma. nincs min. van, hele =, értéke = alulról korlátos zérushel nincs d) D k = R R k = ( ; ] k ()= ½ ½ ( ; ] szig. mon. növõ [; ) szig. mon. csökkenõ ma. van, hele =, értéke = min. nincs felülrõl korlátos alulról nem korlátos zérushel: =, =. a) D f = R R f = [; ) ( ; 0] szig. mon. csökkenõ [0; ) szig. mon. növõ ma. nincs min. van, hele = 0, értéke = alulról korlátos f ()=½½ + ½ ½ zérushel nincs b) D g = R 9 R g = [0; ) 8 ( ; 0] szig. mon. csökkenõ 7 6 [0; ) szig. mon. növõ ma. nincs min. van, hele = 0, értéke = 0 alulról korlátos g ()= ½½ +½ ½ ½½ zérushel nincs

25 c) D h = R R h = [7; ) 0 ( ; ] szig. mon. csökkenõ 9 [; ) szig. mon. növõ 8 7 ma. nincs 6 min. van, hele =, értéke = 7 alulról korlátos zérushel nincs h ()= ½+½+ ½ ½+ ½ ½. a) A függvén az f() =½½+½ + ½+½ ½+½ + ½+½ 6½. 6 Minimumhele = Tehát: b) A függvén az f() =½½+½ ½+½ ½+½ 0½+½ ½+ +½ ½. Minimumhele Î[; 0]. Íg lehet ; 6; 7; 8; 9 vag

26 . A másodfokú függvén SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. a) f ()= + D f = R R f = [; ) ( ; 0] szig. mon. csökkenõ [0; ) szig. mon. növõ ma. nincs min. van, hele = 0, értéke = alulról korlátos zérushel nincs b) D g = R R g = ( ; 0] ( ; 0] szig. mon. növõ g ()= [0; ) szig. mon. csökkenõ ma. van, hele = 0, értéke = 0 6 min. nincs felülrõl korlátos alulról nem korlátos zérushel: = 0 c) D h = R R h = ( ; 0] ( ; ] szig. mon. növõ [ ; ) szig. mon. csökkenõ h ()= ( +) ma. van, hele =, értéke = 0 min. nincs felülrõl korlátos alulról nem korlátos zérushel: = d) D k = R R k = ( ; ] k ()= + ( ; 0] szig. mon. növõ 6 [0; ) szig. mon. csökkenõ ma. van, hele = 0, értéke = min. nincs felülrõl korlátos alulról nem korlátos zérushel: = ± 6

27 . a) D f = R 0 R f = [0; ) 9 8 ( ; 0] szig. mon. csökkenõ 7 f ()= 6 [0; ) szig. mon. növõ ma. nincs min. van, hele = 0, értéke = 0 alulról korlátos zérushel: = 0 b) D g = R 0 9 R g = [0; ) g ()= 8 ( ; 0] szig. mon. csökkenõ 7 6 [0; ) szig. mon. növõ ma. nincs min. van, hele = 0, értéke = 0 alulról korlátos zérushel: = 0 c) D h = R h ()= 6 + d) D k = R 6 k ()= + R h = [ ; ) ( ; ] szig. mon. csökkenõ [; ) szig. mon. növõ ma. nincs min. van, hele =, értéke = alulról korlátos zérushel: = vag = R k = ( ; 6] ( ; ] szig. mon. növõ [; ) szig. mon. csökkenõ ma. van, hele =, értéke = 6 min. nincs felülrõl korlátos alulról nem korlátos zérushel: = 6 vag = + 6 7

28 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. A kõ röpte h magasságának idõ függvéne: ht () = vt gt 0. v Zérushele: t = 0, illetve t = 0 =. g Tehát s múlva ér földet. Maimumának hele t =, értéke h() = 0. A kõ 0 m magasra repül fel.. A négzetgök függvén. a) D f = ( ; 0] R f = [0; ) f ()= Ö szig. mon. csökkenõ ma. nincs min. van, hele = 0, értéke: = alulról korlátos zérushel: = 0 b) D g = [0; ) R g = [; ) g ()= Ö + szig. mon. növõ ma. nincs min. van, hele = 0, értéke = alulról korlátos zérushel nincs c) D h = [; ) R h = [ ; ) h ( )= Ö szig. mon. növõ ma. nincs min. van, hele =, értéke = alulról korlátos zérushel: = 6 8

29 d) D k = [ ; ) R k = [0; ) k ()= Ö+ szig. mon. növõ ma. nincs min. van, hele =, értéke: = 0 alulról korlátos zérushel: =. a) szig. mon. növõ 6 ma. nincs min. nincs 6 b) ( ; ] È [,; ] È [0; ] È [,; ] szig. mon. csök. 0 9 [ ;,] È [ ; 0] È [;,] È [; ) szig. mon. növõ 8 ma. nincs 7 6 lokális ma. van, hele: = 0 =, =, értéke: = = = min. van, hele: = = = = értéke: = 0 c) ( ; ] szig. mon. csökkenõ [; ) szig. mon. növõ ma. nincs min. van, hele =, értéke = 0 d) 6 szig. mon. növõ ; [ ; ) szig. mon. csökkenõ ; ma., illetve min. nincs lokális ma.: hele = értéke, = 6 lokális min.: hele =, értéke = 0 9

30 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. a) b) c) uganaz, mint b) , ha f( ) =, ha > = 0,6 g(0,6) = a maimum hele és értéke 6. Minimum hele = 0, értéke =. 6. Lineáris törtfüggvének. a) D f = R \ R f = R \ ( ; 0) szig. mon. növõ (0; ) szig. mon. növõ ma. nincs min. nincs alulról nem korlátos zérushel nincs b) D f = R \ <> R f = R \ ( ; ) szig. mon. csökkenõ (; ) szig. mon. csökkenõ ma. nincs min. nincs alulról nem korlátos zérushel nincs 0

31 c) D f = R \ <> R f = R \ ( ; ) szig. mon. növõ (; ) szig. mon. növõ ma. nincs 6 7 min. nincs alulról nem korlátos zérushel nincs d) D f = R \ < >R f = R \ ( ; ) szig. mon. csökkenõ ( ; ) szig. mon. csökkenõ ma. nincs min. nincs alulról nem korlátos zérushel nincs. a) b) f( )= g ( )= D f = R \ <> R f = R \ ( ; ) szig. mon. csökkenõ (; ) szig. mon. csökkenõ ma. nincs min. nincs alulról nem korlátos zérushel =, D f = R \ <> R f = R + È ( ; ] szig. mon. csökkenõ [; ) szig. mon. növõ (; ) szig. mon. csökkenõ ma. nincs min. van, hele =, értéke = 0 alulról korlátos zérushel =

32 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE c) d) h ( )= k ( )= + ± D f = R \ <> R f = R \ <> ( ; ) szig. mon. növõ (; ) szig. mon. növõ ma. nincs min. nincs alulról nem korlátos zérushel = D f = R \ < ; >R f = R \ (; ] ( ; ) szig. mon. növõ ( ; 0] szig. mon. növõ [0; ) szig. mon. csökkenõ (; ) szig. mon. csökkenõ ma. nincs lokális ma. van, hele = 0, értéke = min. nincs alulról nem korlátos zérushel =±. a) igen b) nem c) nem d) igen. f g 6 7 8

33 7. Az egészrész, a törtrész és az elõjelfüggvén. a) D f = R R f = Z mon. növõ ma. nincs min. nincs 6 alulról nem korlátos zérushel van: Î[ ; ) b) D f = R R f = Z mon. növõ 6 7 ma. nincs min. nincs alulról nem korlátos zérushel van: Î[; ) c) D f = R R f = Z mon. növõ ma. nincs min. nincs 6 alulról nem korlátos zérushel van: Î[0,; ) d) D f = R R f = Z mon. csökkenõ ma. nincs min. nincs alulról nem korlátos zérushel van: Î(0; ] e) D f = R R f = [0;) periodikus, periódusa 0, eg perióduson belül szig. mon. növõ ma. nincs min. van, hele = 0,k (k ÎZ), értéke = 0 felülrõl korlátos alulról korlátos zérushel van: = 0,k (k ÎZ)

34 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. a) D f = R R f = ( ; ) mon. csökkenõ [0; ) mon. növõ ma. nincs min. van, hele Î[0; ), értéke = 0 alulról korlátos zérushel van: Î[0; ) b) D f = R R f = Z + È ( ; ) mon. csökkenõ ( ; ) mon. növõ ma. nincs min. van, hele Î( ; ), értéke = 0 alulról korlátos zérushel van: Î( ; ) c) D f = R \ [0; ) R f = ½ =, k k Z \ < 0> < >( ; 0) mon. csökkenõ [; ) mon. csökkenõ ma. van, hele Î[; ), értéke = min. van, hele Î[ ; 0), értéke = felülrõl korlátos alulról korlátos zérushel nincs d) D f = R \ <> R f = Z + È ( ; ) mon. növõ (; ) mon. csökkenõ ma. nincs min. van, hele Î( ; ], értéke = 0 alulról korlátos zérushel van: Î( ; ]

35 . a) b) c) További példák függvénekre. a) D f = R \ < >R f = R \ ( ; 0) ( ; ] szig. mon. növõ [ ; ) szig. mon. csökkenõ ( ; 0] szig. mon. csökkenõ [0; ) szig. mon. növõ ma. nincs lokális ma. van, hele =, értéke = min. nincs lokális min. van, hele: = 0, értéke = 0 alulról nem korlátos zérushel van: = 0 b) D f = R \ <> R f = R \ ( ; ) ( ; 0] szig. mon. növõ [0; ) szig. mon. csökkenõ (; ] szig. mon. csökkenõ [; ) szig. mon. növõ ma. nincs lokális ma. van, hele: = 0, értéke = min. nincs lokális min. van, hele: =, értéke = alulról nem korlátos zérushel nincs c) D f = R \ R f = R + ( ; 0) szig. mon. növõ (0; ) szig. mon. csökkenõ ma. nincs min. nincs alulról korlátos zérushel nincs

36 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE d) D f = R \ <> R f = R + ( ; ) szig. mon. növõ (; ) szig. mon. csökkenõ 6 7 ma. nincs min. nincs alulról korlátos zérushel nincs Rejtvén: A sárga A kék A zöld A piros t t t t 6

37 Háromszögek, négszögek, sokszögek. Néhán alapvetõ geometriai fogalom (emlékeztetõ). A a) b) c) d) B C D E. a) rész, félegenes, szakasz d) (n + ) rész, félegenes, (n ) szakasz b), c) a d) alapján. a) 6 b) 0 c) d) n +. a) b) c) d) 6 e). a) b) 0 c) d) e) 6. a) b) 6 c) d) e) 7. AB BC CD AC BD AD m m 8 m 8 m m 6 m dm dm dm 6 dm dm 7 dm cm cm 6 cm cm 7 cm 9 cm km 6 km 7 km km km 8 km mm mm cm mm mm 0, dm nn ( ) nn ( ) 8. a) 0º; 0º b) 8º; º c),º; 6,8º d) 60º ; 9º º = 0º + 0º 70º 80º 0. a) a = º; b = 0º b) a = ; b = c) 00º 0º a = ; b =. 0º 7

38 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. Összefüggés a derékszögû háromszög oldalai között. a) 90º; 0º; 0º; 90º b) 60º; º; 0º; 0º c) 7º; 98º; º; 08º d) 80º; 90º; 70º; 00º e),9º; 6,º; 6,º; 8,º f) º; 9º; 89º; 79º. a) g = 6º; a = º; b = 00º; g = º b) b = 67º; g = 7º; a = º; g = º c) a = 8º; b = º; b = º; g = 0º d) b = 98º; g = 8º; a = º; a = 6º e) a = 90º nem lehetséges f) a = 88º; g = º ez nem lehetséges. a) 0º; 60º; 90º; 0º; 0º; 90º b) 8º; 60º; 7º; º; 0º; 08º c) 7º; 6º; 90º; º; 7º; 90º d) º; 67,º; 97,º; 6º;,º; 8,º e) º; 0º; 9º; º; 0º; 8º f) º; 60º; 6º; º; 0º; º. 8º; 60º; 8º; º; 0º; 98º. a) van b) van c) van d) nincs 6. a) ; ; b) 8; 7; 6; ; ; ; ; c) 8; 8;. ; d) 6;. ; 7. a) cm; a szárszög a kisebb. b) dm; a szárszög a nagobb, vag cm és a szárszög a nagobb, vag cm és az alapon fekvõ szög a nagobb. c) A harmadik oldal (c) lehetséges értéke 0 m < c < 8 m. Ha m < c < 8 m, akkor a szárszög a nagobb; ha c = m, akkor a szögek egenlõek; ha 0 m < c < m, akkor az alapon fekvõ szög a nagobb. d) 8 mm, szárszög a kisebb 8. Szabálos háromszög 6 db, egenlõ szárú db, általános db, összesen db háromszög szerkeszthetõ. 9. a) b b) b c) b = c d) b e) nem háromszög f) c 0. Tudjuk a = b. a+ b+ c < a + c c? a + < a+ c ez igaz Ezzel az állítást beláttuk. a+ c< ( a+ b+ c)? a+ c< 6a+ c? c< a ez igaz. a cm dm m b cm dm 7 m c cm dm 6 8

40 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE 8. a) 6 b) 0 c) 7 d) 6 9. a) 0º; 60º b) º; 6º c) 7,º;,º d) 0. a) b) c) 9 d) º 0º ; 7. a) b) c) 7 d) 9. 6º + º = 88º = 0º 8. Nevezetes ponthalmazok. 90º. A húrt felezõ átmérõ két végpontja.. A keresett pontok az AB szakasz felezõ merõlegesének és a körnek a metszéspontjai. Lehet, vag 0 ilen pont.. a) Az AB felezõ merõlegese által meghatározott azon félsík, amel A-t tartalmazza. b) Az a félsík, amel B-t tartalmazza (a határegenes nélkül).. A középpont a szögtartománban a száraktól cm-re lévõ, velük párhuzamos két egenes metszéspontja. 6. Mindkét szárhoz létezik eg ilen kör. 7. Mivel a szögfelezõk az oldalakkal º-os szöget zárnak be, egmásra a metszõek merõlegesek, a szemköztiek párhuzamosak. Íg eg téglalapot határoznak meg. 8. a) A keresett körök középpontjai az A és B középpontú, cm sugarú körök metszéspontjai. megoldás van. b) A keresett középpontok az A és B középpontú, cm sugarú körök metszéspontjai és az A középpontú cm / cm, illetve B középpontú cm / cm sugarú körök metszéspontjai. megoldás van. c) A keresett középpontok az A és B középpontú, 6 cm sugarú körök metszéspontjai és az A középpontú cm / 6 cm, illetve B középpontú 6 cm / cm sugarú körök metszéspontjai. 6 megoldás van. 9. ½½=½½ 0. Eg pontban metszik egmást.. Eg pontban metszik egmást. Rejtvén: Az egik pont mint középpont körül a másik ponton keresztül rajzolunk eg kört, majd uganezen távolsággal a kerületen lévõ pontból kiindulva a körön felmérünk 6 pontot. Ezek szabálos hatszöget alkotnak, és bármel két szemközti pontnak a távolsága az eredeti két pont távolságának kétszerese. 0

41 9. A háromszög beírt köre. a) 60º; 60º; 60º b) 7º; 7º; º c) 8º; 8º; º d) 0º; 0; 0º. a) 0 cm 8. b) cm =, cm. c) 6, cm. d) 6, cm. 0. A háromszög köré írt kör. a) Megrajzoljuk a kört, és abban felveszünk eg, az alappal megegezõ hosszúságú húrt. A húr felezõ merõlegese metszi ki a körbõl a keresett csúcsot. Két megoldás van, ha az alap nem nagobb a sugár kétszeresénél. b) A kör kerületének eg pontjából körzõzünk a szár hosszával. Ez két pontban metszi a kört, ezek a háromszög keresett csúcsai. Eg megoldás van, ha a szár hossza kisebb mint a sugár kétszerese.. Thalész tétele és néhán alkalmazása. d) 00 a cm a befogó, az átfogó 0 cm.. a) cm b) cm c) 8 cm d) cm. A két talppont illeszkedik a harmadik oldal Thalész-körére.. A két talppont által meghatározott szakasz felezõ merõlegese metszi ki az oldalegenesbõl a harmadik oldalhoz tartozó Thalész-kör középpontját. Ezen középpontból a két talpponton keresztül körzõzünk, mel kör az oldalegenesbõl kimetszi az oldal két végpontját. A talppontok és a végpontok határozzák meg a keresett háromszög oldalait. Két megoldás van, ha a pontok az egenes egik oldalán vannak, és egenesük nem merõleges az egenesre.. A kör az alapot a felezõpontjában metszi, mivel innen a szár derékszögben látszik, és íg ez az alaphoz tartozó magasság talppontja. 6. Vegük fel az átfogót, majd szerkesszünk eg vele párhuzamos egenest magasság távolságnira. Ebbõl a párhuzamos egenesbõl az átfogó Thalész-köre kimetszi a háromszög harmadik csúcsát. Ha a magasság nagobb, mint az átfogó fele, akkor nincs megoldás; ha egenlõ vele, akkor eg egenlõ szárú háromszög a megoldás; ha kisebb, akkor két egbevágó háromszöget kapunk. 7. A körök a harmadik oldalhoz tartozó magaság talppontjában metszik ezt az oldalt. 8. a) cm; cm b) cm; cm c) 6 cm; cm d) Rejtvén: K =. 66; 66 7

42 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. Érintõnégszögek, érintõsokszögek. Ha érintõnégszög, akkor a szemközti oldalak összege egenlõ, azaz az oldalai egenlõek, azaz rombusz.. A belsõ szögfelezõk a beírt kör középpontjában metszik egmást, mivel ez az a pont, mel minden szögszártól egenlõ távolságra van.. a) Felveszünk eg oldalhosszúságú szakaszt, majd párhuzamost szerkesztünk vele kétszeres sugár távolságra. Az oldal két végpontjából oldalhosszúságú sugárral körzõzünk, íg pontot kapunk. Ezeket megfelelõen összekötve az oldal végpontjaival, két egbevágó rombuszt kapunk. b) Felvesszük a beírt kört, majd eg szakaszt, melnek felezõpontja a kör középpontja, hossza pedig az átlóval egenlõ. Az átló két végpontjából a körhöz érintõket szerkesztve megkapjuk a rombuszt.. Vegünk fel a beírt kör átmérõjével egenlõ hosszúságú szakaszt, majd mindkét végpontjában állítsunk rá két merõleges félegenest azonos iránban. A derékszögek szögfelezõi kimetszik a beírható kör középpontját. Rajzoljuk meg a kört. Az egik félegenesre mérjük fel az alap hosszát a derékszögû csúcsból, majd az új végpontból szerkesszünk érintõt a beírt körhöz. Ez a másik párhuzamos félegenesbõl kimetszi a trapéz negedik csúcsát.. Vegünk fel eg derékszöget, majd szerkesszünk eg olan négzetet, amelnek egik csúcsa a derékszög csúcsa, oldalhosszúsága pedig egenlõ a beírt kör sugarával. A nem a derékszögû szárakra illeszkedõ csúcs lesz a beírt kör középpontja. Az adott derékszög egik szárára mérjük fel az adott oldalt a csúcsból, majd rajzoljuk meg az íg kapott végpont és kör középpontja által meghatározott egenest. Erre tükrözve a derékszöget megkapjuk a deltoidot. 6. a) 6 cm vag cm vag 7 cm. b) cm vag cm. 7. A beírt kör középpontját a csúcsokkal összekötve olan háromszögekre bontjuk a négszöget, melek magassága a beírt kör sugara. A háromszögek területeinek összege adja a négszög területét ar br cr dr K r T = =.

43 Egenletek, egenlõtlenségek, egenletrendszerek. Az egenlet, azonosság fogalma. a) állítás b) állítás, igaz c) állítás, igaz d) nem állítás e) állítás, hamis f) nem állítás g) nem állítás. a) Igaz, ha téglalap. b) Igaz, ha c = 0. c) Igaz, ha = l, l ÎZ +. d) Igaz, ha = ; ; ; ; 6;. e) Igaz, ha = 9. f) Igaz, ha n = ; ; 0; ; ; ;.. a) = + b) = c) ( + 0) = d) 7 = + e) =. a) R \ <> b) R \ < ; >c) R \ d) R \ < ; 0; > < >e) R \ 0; f) R \ < ; >g) R \ < ; >h). a) Azonosság, ha a =, az = 0 mindig megoldás. b) Azonosság, ha a =, nincs megoldás, ha a ¹. c) Azonosság, ha a =, mindig van megoldás. d) Azonosság, ha a =, a 0 mindig megoldás. 6. a) = b) = c) = Rejtvén: A negedik állítás igaz csak. < >R \ 0;. Az egenletek megoldásának grafikus módszere. a) = b) = c) = vag = d). ½½= + =. Nincs.. = =

48 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE 0. Egenletekkel megoldható feladatok II.. a: az elvégzendõ munka mennisége a Az egik munkás teljesítméne a másiké, Közös teljesítménük a 0 A közös munkához szükséges idõ =. a a + 0 óra 0 perc alatt végeznek egütt.. a: a kád ûrtartalma a a Az egik csap teljesítméne a másiké és a lefolóé 0, Egüttes teljesítménük a a +. 0 a a a a 0. a 0 6 A feltöltéshez szükséges idõ = = 8 +. a a a Körülbelül 8 óra 8 perc alatt telik meg. a 6.. : a kikötõk távolsága : a hajó sebessége állóvízben 70 km a kikötõk távolsága. + = 7 = = 70; = 7. : az agár által megtett út A sebessége m, az agáré m idõegségenként. 0 = = 0 0 métert kell megtennie.. : az elpárologtatott víz mennisége 0 0, = ( 0 ) 0, 6 0 = 0 l vizet kell elpárologtatni. 8

49 6. : az eredeti ár 00 forintba került. 0, 8, = 00 = 00 Rejtvén: a) túk nap alatt 0 tojás, 9 túk nap alatt 09 tojás, 9 túk 9 nap alatt 7 tojás. b) túk nap alatt tojás, túk nap alatt tojás, túk 6 nap alatt 0 tojás. c) túk nap alatt tojás, túk 9 nap alatt 0 tojás, 7 túk 9 nap alatt tojás.. Elsõfokú kétismeretlenes egenletrendszerek. a) (; ) b) (; ) c) (; ). a) (; ) b) 6 ; c) ;. a) b) 7 ; ; c) 6. a) a ¹ b) nincs ilen a c) a = 6 ;. a) a = b és b b) a= b= Rejtvén: Mindkét egenlet eg-eg egenest határoz meg a koordinátasíkon. Ha a értékét kicsit változtatjuk, akkor a hozzá tartozó egenes meredeksége kicsit változik, de az tengelen vett metszéspont nem. Íg a két egenes metszéspontja, azaz az egenletrendszer megoldása kicsit fog változni. Az állítás tehát igaz. 9

50 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. Egenletrendszerekkel megoldható feladatok. 8 0, 6 + 0, = 0, 9 0 Akárhog keverjük õket össze, 9,%-os oldatunk lesz. km. : a villamos sebessége -ban mérve h : a villamos követési ideje órában mérve Eg iránban haladva két találkozás között a második villamosnak meg kell tannie a két villamos közötti távolságot ( ) és az ember által megtett utat. Ha szembe mennek, akkor az ember által megtett úttal kevesebbet kell megtennie. tehát = + km = = = = + 8 ; h 6 min. h 0. : a tízes heli értéken álló számjeg : az eges heli értéken álló számjeg A szám a = ( 0+ ) + 0+ = ( ) + = 7; = > a. Legen a b + = g Ekkor a nagobb az egik szögnél és kisebb a másiknál. Tegük fel,. hog b < a < g. Íg a b + = g a + g = b a + b + g = 80º a = 60º; b = º; g = 7º. Lineáris többismeretlenes egenletrendszerek. a) ( ; 6; 8) b) (; 0; 0) c). Nemnegatív tagok összege csak akkor 0, ha minden tag ; ; a) (8; ; ) b) 6 ; ; c) (; ; ) 6 0

51 . : vízszintes útszakasz hossza : emelkedõ hossza oda felé z: lejtõ hossza oda felé = 0; = 60; z = 00 Odafelé 0 km vízszintes, 60 km emelkedõ és 00 km lejtõ.. Játék elõtt: A: B: C: z. játék után: A: z B: C: z. játék után: A: ( z) B: ( z +z) = C: z = z. játék után: A: ( z) B: ( z) C: z ( z + z) = = 7z z= 00 6 z= 00 7z = 00 7 = ; = ; z= 0. a, b, c: a szakaszok hossza cm-ben z + + = z = z= 00 a+ b= b+ c= 8 a+ c= 0 a = 7; b = ; c = Mivel a + c < b, nem alkothatnak háromszöget.

52 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE Egbevágósági transzformációk. Tengeles tükrözés a síkban. Számozzuk meg a nilakat! Tengelesen szimmetrikus: ; ; 6; 7; PP szakasz felezõ merõlegese.. a) A ( ; ); B (; ); C ( ; ) b) A (; ); B ( ; ); C (; ). A( ; ); B(; ); C(; 8) A kör középpontjából körzõzzünk olan nag sugárral, hog két helen metsze az egenest.. Ezen sugárral mindkét metszéspontból körzõzünk az egenes másik oldalán, hog az ívek metszék egmást.. A kapott pont a kör tükörképének középpontja, íg az adott sugárral megrajzoljuk a kör képét. 6. A középpontok által meghatározott szakasz felezõ merõlegese a keresett egenes. 7. Tükrözzük c egenest b-re. Ahol a kép metszi az a egenest ott van a keresett pont. 8. A P pont az AB egenesére illeszkedik, hiszen a szögfelezõre való tükrözés oldalegenest oldalegenesbe visz. 9. Mindkét csúcsot tükrözzük a szögfelezõre. Az eg félsíkban lévõ pontok eg-eg oldalegenest határoznak meg, meleknek a szögfelezõn kell metszeniük egmást. Ha a csúcsok szimmetrikusak a szögfelezõre, akkor a háromszög egenlõ szárú, és a harmadik csúcs a szögfelezõ egenes bármel olan pontja lehet, amel nem illeszkedik az adott oldalra. 0. Tükrözzük A-t e-re. A B Ç e a keresett pont.. Mivel az eredeti csúcsoknál lévõ szög az új alakzatban 80º, az eredeti háromszög mindhárom szögének 60º-nak kell lennie. Az eredeti háromszög tehát szabálos. Rejtvén: Attól függ, hog a számlap számozása azonos vag ellentétes iránú. (Ha azonos a számozás irána, akkor 6 óra múlva; ha ellentétes, akkor mindig uganazt az idõt mutatják.). Tengelesen szimmetrikus alakzatok. a) hamis b) igaz c) hamis d) igaz e) hamis f) igaz g) hamis h) igaz i) igaz j) hamis k) hamis. Tükrözzük a harmadik csúcsot a szimmetriatengelre.

53 . Mindkét csúcsot tükrözzük a szimmetriatengelre.. Tükrözzük az egik egenest a tengelre. Ahol a kép metszi a másik egenest, az a deltoid egik csúcsa, melet tükrözve a tengelre, a negedik csúcsot is megkapjuk. Ha a tükrözésnél a kép egbeesik a másik egenessel, akkor bármelik pontja lehet a deltoid harmadik csúcsa.. A két pont által meghatározott oldalegenes két pontban metszi a tengeleket. Ezek csúcspontok. Ezeket tükrözve a tengelekre, megkapjuk a másik két csúcspontot is. Ez mindig megszerkeszthetõ. 6. Egik lehetõség: (; ); ( ; ); ( ; ); (; ). Másik lehetõség: 0 ; ; 0; ; 0 ; ; 0;. ( ) ( ) ( ) ( ) 7. Mindkét tengelnek eg-eg csúcsra kell illeszkednie. A tengelekre illeszkedõ csúcsokból induló oldalak egmásra szimmetrikusak, azaz egenlõek. Íg mindhárom oldal egenlõ, tahát van harmadik szimmetriatengel.. Középpontos tükrözés a síkban. Számozzuk meg a nilakat! Középpontosan szimmetrikus: ; 6; 8; 9.. Az AB szakasz felezõpontja a tükrözés középpontja B képe A lesz.. A középpontok által meghatározott szakasz felezõpontja a tükrözés középpontja. O O 6 O O. a) A (; ); B ( ; ); C (; ) b) A (; ); B ( ; ); C (; ) c) A (; ); B (0; 7); C (7; 9). A( ; ); B ( 7; ); C ( ; 0) 6. a) cm oldalú szabálos hatszög. b) cm oldalú -szög, hatágú csillag. 7. Tükrözzük az egik egenest a pontra. Ahol a kép metszi a másik egenest, ott lesz az egik pont, melet tükrözve az adott pontra, megkapjuk a másik pontot is. 8. Eg háromszöget kapunk, hisz az eredeti háromszög csúcsainál egmás mellé kerül a három belsõ szög, melek összege 80º. 9. Az egik ilen szelõ a két metszéspont által meghatározott közös szelõ. A másik szelõ megszerkesztéséhez tükrözzük az egik metszéspontra az egik kört. A kép és a másik kör metszéspontja a kiválasztott metszésponttal meghatározzák a keresett szelõt. 0. Tükrözzük az egik szögszárat a P-re. Az a pont, ahol a kép metszi a másik szárat, a P- vel meghatározza a keresett egenest. Rejtvén: Az elsõ érmét az asztal középpontjába tege, majd mindig az ellenfél érméjének ezen pontra való tükörképére tege az érméit

54 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. Középpontosan szimmetrikus alakzatok. a) hamis b) igaz c) hamis d) igaz e) igaz f) igaz g) hamis h) igaz i) igaz. A két csúcsot tükrözzük az átlók metszéspontjára.. C(; ); D(; ). Paralelogrammát, hiszen átlói felezik egmást.. Tükrözzük O-ra a szög csúcsát, íg a paralelogramma másik csúcsát kapjuk. Ezen keresztül húzzunk párhuzamosokat a szög száraival, melek a paralelogramma oldalegenesei. Ezek a szögszárakból kimetszik a hiánzó két csúcsot. 6. a) 7º; 08º b) 80º; 00º c) º; 6º d) p 80 º q 80 º ; p + q p + q 7. Húzzunk a szögfelezõjével párhuzamost C-n keresztül, íg a kapjuk j szöget. j és váltoszögek íg egenlõek. Tehát j egik szára szögfelezõ. Mivel eg szögnek eg és csak eg szögfelezõje van, a két szögfelezõ párhuzamos. Ha a két szögfelezõ eg egenesbe esik, akkor a paralelogrammát két olan háromszögre bontják, melekben két szög egenlõ, azaz egenlõ szárúak. Tehát a paralelogramma rombusz. a A D B j C 8. Nem igaz, mert az átlók nem feltétlenül lennének egenlõ hosszúak, csak biztosan feleznék egmást. Rejtvén: Van, például egenes, sík. 6. A középpontos tükrözés alkalmazásai 7. a) cm ; cm ; cm b) dm ; dm ; dm c),6 m; 0 cm; dm d) nem alkotnak háromszöget, hiszen = 7, +,8. a) 6 cm b) dm c), cm d) 7 mm. Az átfogó hossza a vele párhuzamos középvonal hosszának kétszerese, azaz 6 cm. Vegük fel az átfogót, és rajzoljunk vele párhuzamos egenest cm távolságban (két párhuzamos egenes). Rajzoljuk meg az átfogó Thalész-körét. Ez a párhuzamosokból kimetszi a háromszög harmadik csúcsát. Íg db egbevágó háromszöget kapunk.. a) 7 b) c) cm dm mm d) a + b

55 . a) 6 cm b) 9 dm c) 8, m d) 6. Paralelogrammát határoz meg. a) 0 cm; 8 cm b) cm; cm c) ; d 7. Szerkesszük meg az a, b, s c oldalú háromszöget. Tükrözzük B-t F-re. Az íg kapott pont a keresett háromszög harmadik csúcsa (A). 8. A felezõpontokat összekötõ szakasz a két szomszédos oldal által meghatározott háromszög középvonala, melrõl tudjuk, hog párhuzamos a harmadik oldallal, mel a négszög egik átlója. AC 9. A 8. feladat alapján F F ª AC ª F F és FF = = FF. Mivel az F F F F négszögben két oldal hossza egenlõ és párhuzamosak, a négszög paralelogramma. 0. A 9. feladat alapján a középvonalak eg paralelogramma átlói, melekrõl tudjuk, hog felezik egmást.. Ha a középvonalak egenlõ hosszúak, akkor az oldalfelezõ pontok által meghatározott paralelogramma téglalap, tehát a négszög átlói merõlegesek egmásra.. A körök páronként a harmadik oldalon, a magasság talppontjában metszik egmást. Íg a szelõk metszéspontja a magasságpont. D A F A D s c F F b F F s c B B C a C F. a) Az egik oldal felezõpontjára tükrözve a háromszöget, mindig kapunk eg olan háromszöget, melnek oldalai az eg csúcsból induló háromszögoldalak és a súlvonal kétszerese. Ebben a háromszög egenlõtlenség alapján a b a c b c sc + ; s b + ; sa +. Ezeket összeadva kapjuk, hog s a + s b + s c a + b + c. b) Tükrözzük a háromszög csúcsait mindhárom oldalfelezõ pontra. Íg kapjuk A B C háromszöget. Ebben SA’ = s s s Hasonlóan SC’ = a a = a. s c. SA C háromszögben a háromszög egenlõtlenség alapján sc + sa b. Hasonlóan kapjuk, hog sa + sb c, sb + sc a. B’ s c b s c b C S A a A’ B C’

56 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE Ezeket összeadva, kapjuk: 8 ( sa + sb + sc) ( a+ b+ c). Innen sa + sb + sc a+ b+ c ( ). Ezzel az állítást beláttuk. 7. Pont körüli forgatás a síkban. a) b) c) +º +90º 60º d) e) f) +70º 80º 90º. a) b) c) 60º º O O O +0º. Az AB szakasz felezõ merõlegesének pontjai.. Az egik szakasz egik végpontját összekötjük a másik szakasz egik végpontjával, majd a megmaradt végpontokat is összekötjük. Az íg kapott szakaszok felezõ merõlegeseinek metszéspontja lesz a forgatás középpontja. Két ilen középpont kapható. 6

57 . Az AB szakasz adott szöghöz tartozó megfelelõ látószög körívének és a szakasz felezõ merõlegesének metszéspontja a forgatás középpontja. a) b) O A B A B O c) d) O O A B A B 6. a) A ( ; ); B ( ; ); C ( ; ) b) A (; ); B (; ); C (; ) c) A (; ); B ( ; ); C (; ) d) A (; ); B (; ); C (; ) 7. a) ( ; ) vag (; ) b) (; ) vag ( ; ) c) (; ) vag ( ; ) d) (8; ) vag ( 8; ) 8. Forgassuk el az egik egenest 60º-kal. Ahol a kép metszi a másik egenest, ott lesz a háromszög eg másik csúcsa. Ezt a pontot az elõzõvel ellentétes iránban forgatva 60º-kal kapjuk a harmadik csúcspontot. Két megfelelõ háromszöget kaphatunk. 9. Az átlók metszéspontja körül -szor forgassuk el a csúcspontot 90-90º-kal. 0. 7

58 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE 8. A pont körüli forgatás alkalmazásai I.. a) 80º b) 0º c) 70º d) 70º 7. a) 90º b) 60º c) º d) 00º p p p 7p p. a) b) c) d) e) f) 6 8 7p g) h) 8 7 p p. a) 60º b) 0º c) 0º d) 7º e) 0º 60º f) 6º g) 0º h) 900º p,. a) Nagmutató: p m; kismutató: p cm. b) Nagmutató: p m; kismutató: 0p cm. c) Nagmutató: 8p m; kismutató: 0p cm. d) Nagmutató: 67p m; kismutató: 60p cm. e) Nagmutató: 0p m; kismutató: 060p cm. f) Nagmutató: 87,6p km; kismutató:,8p km. 6. a) p cm ; ( + p) cm b) 7p c) 7p cm ; + cm d) 6 6 p 7. a) A hulladék: m; 9%. b) 6 c) p p A hulladék: 8 m; 7%. d) 8. a) p %, % b) p c) % 60, 7 % d) 8 p 6 9 p cm ; + cm p 6p cm ; + cm 9 A hulladék: A hulladék: p % 7 % p % 7 % p m; 6%. p m;, %. 8

59 9. A pont körüli forgatás alkalmazásai II.. a) A forgatás szöge: 0º; 0º. b) A forgatás szöge: 90º; 80º; 70º. c) A forgatás szöge: 7º; º; 6º; 88º. d) A forgatás szöge: 0º; 60º; 90º; 0º; 0º; 80º; 0º; 0º; 70º; 00º; 0º. Súlpont körül forgatunk.. a) tengeles tükrözés, az oldalfelezõ merõlegesekre. Középpont körüli 0º, 0º-os forgatás. b) tengeles tükrözés, az átlókra. tengeles tükrözés, az oldalfelezõ merõlegesekre. Középpont körüli 90º, 80º, 70º-os forgatás. Középpontra való tükrözés.. a) igaz b) hamis c) hamis d) igaz e) igaz f) igaz g) hamis h) hamis. A súlpont körül forgassuk el a csúcsot kétszer, 0º-kal.. A két csúccsal szerkesztünk eg szabálos háromszöget, majd az új csúcs körül elforgatjuk egmás után -ször 60º-kal a háromszöget. 0. Párhuzamos eltolás, vektorok. B’ B D A’ C A. A C F; D E. B A 9

60 SOKSZÍNÛ MATEMATIKA 9 A KITÛZÖTT FELADATOK EREDMÉNYE. Nem oldható meg, ha a két egenes párhuzamos. a) B’ b C’ B S’ A’ C S a A CC’ = BB’ = AA’ = SS’ b) Uganíg.. a) igaz b) hamis c) igaz d) hamis e) igaz 6. B v B’ B” 7. A º A” v = v + v v A’ a = e = h; b = f; i = j = d = c 8. A B pontot toljuk el a foló felé a folóra merõleges és a foló szélességével egenlõ nagságú vektorral. Ahol az AB egenes metszi a foló A felõli partvonalát, ott kell épülnie a hídnak.. Mûveletek vektorokkal. a) AC b) AD c) GB d) DB e) DF. a) (; ) b) (; ) c) (7; 7) d) (; ) e) (; 0) f) ( + a; + b). a) (; ) b) (; ) c) (6; ) d) ( ; ) e) (0; ) f) (p + ; q ). a) v( 0 ; ) b) v( 9; ) c) v( ; ) 6. AC = AB + AD; DB = AB AD 60

61 . Alakzatok egbevágósága m. a) a = alapján oldalaik egenlõek, tehát egbevágóak. b) Uganaz, mint a) mivel s = m. R c) Mivel m= R az a) alapján a = és íg az oldalaik egenlõek, ha a sugarak, egenlõek. a) A befogók az átfogó -ed részei, íg ha az átfogók egenlõek, akkor a befogók is. Vag eg-eg oldalban és a rajta fekvõ két szögben (º; º) egenlõek. b) Eg-eg oldalban és a rajta fekvõ két szögben (90º; º) egenlõek. c) Uganaz, mint a) hisz a körülírt kör sugara az átfogó fele.. a) Két-két oldalban és a közbezárt szögben egenlõek. b) A szemközti szög legen a; eg-eg oldaluk és a rajta fekvõ két szögük (90º; 90º a) egenlõ. c) Kössük össze az átfogó felezõpontját a szemközti csúccsal. Mivel ez a köréírt kör sugara egenlõ az átfogó felével. A két háromszögben kapott, a sugár és a magasság által meghatározott derékszögû háromszögek egbevágóak (két-két oldalban és a nagobbikkal szemközti szögben egenlõek). Ebbõl adódik, hog ezen sugarak által meghatározott két-két részében, a két eredeti derékszögû háromszögnél, két oldalban és a közbezárt szögben egenlõek, íg egbevágóak. a. a) Legen a szárszög a, ekkor eg-eg oldaluk és a rajta fekvõ két-két szögük 90º egenlõek. a b) Legen az alap a, íg b = +m a, tehát ha az alap és a hozzá tartozó magasságuk egenlõ, akkor a száraik is egenlõek. c) Legen az alapon fekvõ szög b, a magasság két derékszögû háromszögre vágja mindkét háromszöget. Ezek páronként egbevágóak, hisz eg oldaluk (magasság) és a rajta fekvõ két-két szögük (90º; 90º b) egenlõ. Íg a két háromszög is egbevágó.. Ha két szögük egenlõ, akkor mindhárom szögük egenlõ. Az adott oldal azonban lehet alap vag szár is, íg nem egértelmû a megadás, a két háromszög nem feltétlenül egbevágó. 6. Ha a két szár egbevágó, akkor azok csak háromszögek lehetnek. Tehát a szelõ egenes eg csúcson halad át és eg oldalt metsz. A két keletkezett háromszögben, az eredetileg egmással érintkezõ két oldallal szemközti szögek egenlõek az egbevágóság miatt. Íg az eredeti háromszögben van két egenlõ szög, tehát a háromszög egenlõszárú. 7. Legen a két magasság m a és m b. Az AT a C è és a BT b C è egbevágó, mivel eg-eg oldaluk (m a = m b ) és a rajta fekvõ két szögük (90º; 90º g) egenlõ. Tehát a = b, azaz a háromszög egenlõszárú. a ma b mb Másként: A területképlet alapján =, és m a = m b, tehát a = b. b A T b m a C T a m b B 6

Comments are closed, but trackbacks and pingbacks are open.