Press "Enter" to skip to content

Sokszínû matematika 7. A KITÛZÖTT FELADATOK EREDMÉNYE

A tartalom el lett távolítva a MOZAIK KIADÓ Kft. kérésére.

sokszínű matematika 5 tankönyv megoldások letöltés

Sokszínű matematika 11 12 tankönyv letöltés:pdf. Megjegyzés: Ebben a feladatban is az invariáns módszert alkalmaztuk, invariáns mennyiség az egy.

2020. nov. 7. . Sokszínű matematika 11 tankönyv pdf letöltés download. Szakközépiskolás matematikai feladatok H áromszög (589, 3 kB) M agasság-té (78 .

Letöltés MS- 2305U Sokszínű matematika tankönyv 5. . Mozaik- Sokszínű Matematika 12. osztály Mozaik- Rajz és vizuális kultúta 5. munkatankönyv Mozaik.

HelpWire is the ultimate one-stop shop for people of all expertise levels looking for help on all kind of topics — tech, shopping and more.

BuyDirect.com is a shopping search hub for retailers, businesses or smart consumers.

Search.com is the place to finally find an answer to all your searches. Immediate results for any search!

AnswerSite is a place to get your questions answered. Ask questions and find quality answers on AnswerSite.com

TheWeb has all the information located out there. Begin your search here!

iDaily provides up-to-date information you need to know. Find everything from the latest deals to the newest trending product – daily!

Kombinatorika, halmazok, 9. 1. Mi mit jelent a matematika nyelvén? 10. 2. Számoljuk össze! 15. 3. Halmazok, 21. 4. Halmazműveletek, 26. 5. Halmazok .

Matematika munkatankönyv második osztályosoknak. . Matematika tankönyv 2. osztály. Sokszínű matematika 2. – I. félév Matematika munkatankönyv második .

KOSZTOLÁNYI-KOVÁCS-PINTÉR-: MS-2312 Sokszínű matematika tankönyv 12.o. (Digitális hozzáféréssel) 5% kedvezménnyel csak 1890 Ft a lira.hu-nál.

A többszörösen díjazott sorozat 11. osztályos matematika tankönyve. . Emelt színtű matematika érettségi témakörök (2020) (pdf) · A kitűzött feladatok eredménye (pdf) . Letölthető megoldásokkal · MS-2312 – Sokszínű matematika 12. MS-2313 – Sokszínű matematika – Az analízis elemei – Emelt színtű tananyag · MS-2327 .

Könyv ára: 2261 Ft, SOKSZÍNŰ MATEMATIKA TANKÖNYV 12. OSZTÁLY – Kosztolányi József – Kovács István – Pintér Klára – Urbán János – Vincze István, A 12.

A többszörösen díjazott sorozat 9. osztályos matematika tankönyve. (NAT2020-hoz is ajánlott)

A többszörösen díjazott sorozat 6. osztályos matematika tankönyve. A tanulók tapasztalataira építő tankönyv segíti az otthoni tanulást is.

sokszinu-matematika-6-tankonyv.;. Sokszínű matematika 6. osztály Tankönyv . A Sokszínű matematika 6. tankönyvben nagy számban találhatók olyan .

A többszörösen díjazott sorozat 5. osztályos matematika tankönyve. A tanulók tapasztalataira építő tankönyv segíti az otthoni tanulást is. (NAT2020-hoz is ajánlott) . Segédanyag · Matematika 5. tk. – A kitűzött feladatok eredménye (pdf).

Sokszínû matematika 7. A KITÛZÖTT FELADATOK EREDMÉNYE

3 Tartalom. TERMÉSZETES SZÁMOK, RACIONÁLIS SZÁMOK. ALGERAI KIFEJEZÉSEK EGYENLETEK, EGYENLÕTLENSÉGEK. SÍKGEOMETRIA I HALMAZOK, KOMINATORIKA LINEÁRIS FÜGGVÉNYEK, SOROZATOK SÍKGEOMETRIA II STATISZTIKA, VALÓSZÍNÛSÉG TÉRGEOMETRIA. 8

4 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. Természetes számok, racionális számok. A racionális számok alakjai. a) = : = 0, b) = : = 0, – c) = µ : = µ0, d) 7 = = 7 : 7», e) = µ0 : 8 = µ, f) – = – = µ : 8 = µ, g) = : 0 = 0, h) = µ : 8 = µ0, 0 8. a) 0, = = 0 b) c), = = 00 0 d) e) -, = – = – f) 0 0, = = 000 8, = + 0, = + = – 0, = – = – 00 g) 9, = + 09, = + 9 0, = + 9 = + = 9 h) 87 -, 87 = – = a) b), c) – d), 9. a) igaz b) igaz c) igaz d) hamis e) igaz. a) µ ª < 0 b) 0 < ª c) ª < µ d) ª >. a) 0,7 > b) 0,9 < d) - >µ0, 7. a), ; = =, ; =, ;, növekvõ sorrend:,

6 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE c) ; = 0. G (0; ) H (µ; 0) I (0; µ) J (8; 0). A tört értéke akkor lesz a legnagyobb, ha a számkártyákból a számlálóba a lehetõ legnagyobb, a nevezõbe a lehetõ legkisebb számot rakják. A tört értéke akkor lesz a legkisebb, ha a számlálóba kerül a lehetõ legkisebb, a nevezõbe a lehetõ legnagyobb kétjegyû szám kerül. Rejtvény: Legnagyobb: : ( : : : : : 7 : 8 : 9) = 9070 Legkisebb: ( : : : : : : 7 : 8) : 9 = 0, Mûveletek racionális számokkal. a) b) µ ( µ ) = µ (µ) = µ (µ) = 9 c) d) e) Ê ˆ Ë = + -, – ( – 9) =, – =, -, = Ê ˆ Ë = – Ê + ˆ Ë = – = – = – = – = – Ê ˆ + 0 Ë = + Ê – ˆ Ë = + Ê 0 – ˆ, Ë 0 = = + 0 Ê ˆ – Á = – 0 = 0 Ë 7 = + Ê ˆ – 7 Á = + (- ) = – Ë f). a) b) c) d) – Ê ˆ + + Ë + = – Ê Ë + ˆ + = = = – 9 Ê ˆ Ë = = 0 Ê ˆ Ë = = 0 Ê ˆ Ë = , Ê Ë =- 0 ˆ = – = – = – = – = – 9

7 e) f). a) b) (- Ê ˆ ) – ( ) Ë – = – Ê Ë – ˆ – = Ê Ë – ˆ – = Ê Ë – Ê Ë – 0 0, ˆ Ê Ë, – ˆ 0 = Ê – ˆ Ë 0 Ê 0 – ˆ Ë 0 = Ê Ë0 – ˆ = – + = ( – ) ( ) ( ) + =- Ê ˆ – + Ë Ê Ë – ˆ = Ê Ë – + ˆ Ê Ë – ˆ = Ê Ë – ˆ = ˆ – 8 =- 8 = 0 0 = 00 c) d) È – – Ê ˆ Ë – Î Í Ê ˆ – Ë = Ê Ë ˆ Ê Ë – 9ˆ = Ê Ë – ˆ : 9 Ê 9ˆ Ë – = 9 Ê ˆ – : Ë Ê – Ë. a) A negyedik napon: b) A nyolcadik napon: 7ˆ 8 7 = 9 Ê 0 – ˆ Ë 0 Ê – ˆ Ë 7 = 9 0 Ê – ˆ Ë 7 = = = = = c) Látjuk, hogy négynaponta résznyi méz fogy el. 9 Folytatva a gondolatmenetet: Morgónak a. napon -ed, azaz csupor méze lesz, ez a. napon elfogy. Mivel a. napon = csupor mézet szerez, ebbõl kétszer 9 (vagyis a 7. és 8. napon) tud csupornyit enni, de a 9. napra már nem jut egy rendes adagnyi.. Egy nap alatt megépítik a vár részét (az éjszakai leomlást is beleszámítva), így a 90 nap szükséges a felépítéshez. Ê ˆ. Például: – Ë = = a) 0 A = < = b) c) 0 A = < = d) A = < = A =- >= a) Ê ˆ Ê ˆ 0 Ë -, + 0 : Ë -, + = ( 0, – ) : ( 0, , ) ( 0, ) : (-0, ) = = b) Ê ˆ Ê ˆ 0 8 Ë -, +, 0 8 : Ë -, +, = ( 0, – ) : ( 0, – – 0, ) ( 07, ):( -0, 7) = = 7

8 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE c) Ê – 0+ ˆ Ê Ë ˆ, : Ë, = ( 0, -):( 0, , ) ( – 0, ):( – 0, ) = d) 9. a) Ñ+ = b) Ò: = 0, c) 07, Ó – d) = 0. a) b) c) d) Ê ˆ Ê ˆ 0 Ë -, + 0 : Ë -, + = ( – ) : ( 07, – – 0, ) ( – ) : ( – 0, ) = : =. rész = km – = : = : = 0 = : Ê ˆ – Ë =- 9 = + : = + = 9 + = rész az egész út Þ km = km = km. rész + rész = rész Összes versenyzõ: Karcsi az összes versenyzõ része Tehát összesen fõ indult. Karcsi harmadikként ért célba.. a) vagy b) Rejtvény: a) pl.: = b) pl.: 9 = : = Az út hossza: vagy rész rész 70 Cél 9 Ð: = 0 Ê ˆ Ë – + Ê + ˆ Ë = km = rész rész c) pl.: Ê ˆ Ë – 0 : = 8

9 . Arányos következtetések (emlékeztetõ). a) cm a térképen a valóságban cm = 000 m = km -ször akkora távolság km = 7 km b) cm a térképen a valóságban km km km = A térképen cm lesz a távolság.. Térképen: cm Valóságban: 0 km = m = cm : = : a) Egyenes arány b) Egyenes arány c) Egyiksem d) Egyik sem e) Egyenes arány. h 00 km egyenes arányosság h 00 = 0 km 8, egyenes arányosság 8, h 0 km 8, = 00 km 00 km-t tesz meg 8, h alatt.. 70 adaghoz 0, kg hús 7 egyenes arányosság 0 adaghoz 0, kg 7 =, kg 0 egyenes arányosság 00 adaghoz, kg 0 = kg 00 adaghoz kg hús szükséges.. 0 kg-hoz 0 db doboz egyenes arányosság 0 kg-hoz 0 db = 00 db 0 kg szõlõt 00 db dobozba csomagolunk. 7. db 7 dl-es üvegbe összesen 7 = 7 dl gyümölcslét töltöttek. Ha üveg, dles, akkor 7, = db, dl-es üvegre van szükség (fordított arányosság). km 8. I. sebessége: 000 h km km II. sebessége: 000 = 00 h h Az I. repülõ h alatt 000 km-t tesz meg, akkor h alatt 000 km-t. Ezt a 000 km-t km a 00 sebességgel száguldó repülõ h alatt teszi meg, hiszen ez a repülõ h alatt h csak 00 km-t megy. 9

10 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE perc alatt 0 (l) 0 egyenes arányosság 0 perc alatt 0 (l) 0 = 00 (l) perc alatt (l) 00 (l) 00 = 8 perc 8 perc alatt telik meg másik csapból. kacsához 0 kg 0 egyenes arányosság 0 kacsához 0 kg 0 = 00 kg kacsához 0 kg egyenes arányosság kacsához 0 kg = 0 kg 0 kacsa felhízlalásához 0 kg-mal több kukorica szükséges.. gyerek óra 80 db egyenes arányosság gyerek óra 80 db = db egyenes arányosság gyerek óra db = 9 db egyenes arányosság gyerek óra 9 db = 9 db egyenes arányosság gyerek óra 9 db = 88 db gyerek óra alatt 88 db szendvicset tud elkészíteni.. egér sajt nap fordított arányosság egér sajt = nap fordított arányosság egér sajt =, nap egyenes arányosság egér 0 sajt, =,8 nap egérnek 0 sajt,8 napra elegendõ.. András alázs Csaba db db 0 db összesen: 9 db szendvics osztoztak db db db András db, alázs db szendvicset adott át Csabának, aki ezért ezek arányában fizetett a fiúknak. 0 Ft : arányban osztva. 0 Ft µ 00 Ft. Csaba Andrásnak 0 Ft-ot, alázsnak 00 Ft-ot fizetett. 0

11 . x x + = x = = 7 = 7 7 7,. t = 00 a + ö ö = 0 a + 0, m m = 0 a + 0, k k = 8 a Visszafelé helyettesítésekkel: m = 0 a + 0, 8 a = a ö = 0 a + 0, a = a t = 00 a + a = a táltos aranyat ér. perc alatt melegítik fel együtt a bojlerben a vizet. Rejtvény: Nem lehet tudni, mivel a hét napjai és a között, hogy fúj-e a szél, nincs matematikai összefüggés.. Százalékszámítás (emlékeztetõ) a) 00 – = = 98 b) c) = 00-0 = 00-0 = 0 00 = 0 = 0. a) 000, = 00,-szeresére b) 0,8-szeresére c) -szorosára d),-szeresére e) -szeresére f) 0,00-szeresére. a) 00, = 70 b) = 0 c) 00 0, = 0 d) 00 0 = 0. a) 00%-ra (00%-kal nõ) b) 0%-ra (0%-kal csökken) c) 0%-ra (0%-kal nõ) d) 00%-ra (00%-kal nõ) e) 0%-ra (80%-kal csökken) f) %-ra (%-kal nõ)

12 . a),-szorosára b) 0,9-szeresére. a) 0%-kal nõtt b) %-kal nõtt SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE 7. Medve: 0 0 =, %-kal nõtt a tömege Elefánt: 0 0 =,»,7%-kal (kb.) nõtt a tömege A medvebocs nõtt jobban. 8. Összesen: 000 fõ Férfi 80% Nõ 0% Átlagosan 000 fõ a férfi. 9. Döntõben szereplõ csapatok szurkolói: , = 00 db- 00 db Szervezõk: ,0 = 70 db ajnokság csapatai: , = 0 db Nemzetközi Labdarúgó Szövetség: , = 000 db Ismert személyiségek: 000 db (VIP) , = fõ hoz szendvicset az iskolába ,8 = 000 fõ. a) Elsõ változás: 000,08 = 080 Ft Második változás: 080 0,9 = 99, Ft Összesen: 99, 000 = 0,99 99,%-os most, azaz 0,%-kal csökkent az ár. b) Elsõ változás: 000 0,9 = 90 Ft Második változás: 90,07 = 99, Ft Összesen: 99, 000 = 0,99 99,%-os most az áru, azaz 0,9%-kal csökkent az ár.. Fenyõ Tölgy 0% 80% Tölgynek a negyede, azaz %-a a fenyõk száma.. 00 kg + 00 kg = 00 kg -szörösére nõ. Eredeti Új +0% 0 cm 0 cm, = cm a) K= 0 cm = 0 cm K = cm = cm 0 =, 0%-kal nõtt a kerülete b) T = 0 cm 0 cm = 00 cm T = cm cm = cm 00 =, %-kal nõtt a területe

13 . Eredeti Új Egyik oldal: 0 cm 0 cm 0,8 = 8, cm Másik oldal: 0 cm 0 cm, = cm a) K= (0 cm + 0 cm) = 0 cm K = ( cm + 8, cm) = cm 0 =,0 %-kal nõtt a kerülete b) T = 0 cm 0 cm = 00 cm T = cm 8, cm = 9, cm 9, 00 = 0,977,%-kal csökkent a területe. a) 9 versenyen indult b) kb. 0,% c),% d). helyezés ( db). helyezés ( db). helyezés ( db). helyezés ( db). helyezés ( db) 7. a) b) Eredmény Fõ % Jeles Jó Közepes Elégséges Elégtelen Nem vizsgázott 7 0. 0. c) % Jeles Jó Közepes Elégséges Elégtelen Nem vizsgázott 0%,%,%. Jeles Jó Közepes,%,%,% Elégséges Elégtelen Nem vizsgázott 8. a) Jeles: 0% Jó:, % Közepes:, % Elégséges: 0% Elégtelen:, % Nem írt:, % 0%,% 7% 0%,% 7% Jeles Jó Közepes Elégséges Elégtelen Nem írt b) Átlag: 90 8 ª,

14 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE 9. = (x + 0,7x) =,x x = cm Egyik oldal: cm (Vagy: Következtetéssel: A félkerület cm. Az egyik oldal 00%, a másik 7% Þ cm az 7% Þ akkor a 00% cm.) Másik oldal: 9 cm T = cm 9 cm = 08 cm 0. a) 0 km-en 7 (l) 00 km-en 7 (l) 0 = 70 (l) b) 0 km-en 7 (l) 0 km-en 7 (l) = 8 (l) 0% Összes üzemanyag 00% 8 (l) = 0 (l). Az eredeti ár: x. A 0% leszállítás utáni ár: 0,9 x, ekkor a haszon:,08 x. Kérdés: Mekkora a haszon x eladási árnál?,08 0,9 =, Þ 0% volt a leszállítás elõtt a haszon. =, = = 0 -nek hány %-a a? Rejtvény: A gyorshajtók reciproka 80 : = = = Æ 80% Æ 00 -et 0%-kal kell csökkenteni -része nem %-a az összes autósnak. = = 00, =, % 0. Kamatszámítás. Gazdálkodj okosan!. a) 0 000,07 = Ft b) [(0 000,07),07],07 = 0, Ft c) 0, : =,0,%-kal növekedett az összeg.. a) 0,0 = 0,kg b). nap végén

15 . év múlva ,97 = 9700 Ft év múlva ,97 = 909 Ft év múlva 909 0,97 = 9,7 Ft év múlva 97 0,97 = 88,98 Ft év múlva 88 0,97 = 887, Ft. x,0 = x» 9 08 Ft. [(x,0),0],0 = x» 7 77 Ft. a) <[(0 000,0),0],0>,0 = Ft b) 0 év múlva: Ft (Kerekített értékek.) 0 év múlva: 7 Ft 0 év múlva: 0 Ft 07 év múlva: 07 Ft 08 év múlva: 77 Ft 09 év múlva: Ft 0 év múlva: 89 Ft év múlva: 7 0 Ft év múlva: 7 98 Ft év múlva: 8 8 Ft év múlva: Ft év múlva: Ft , = 000 Ft-ot kell visszafizetni , = 000 Ft-ba fog ténylegesen kerülni a gép ,00,00 = 0 0, Ft. Ebbõl Józsi mindenképpen kifizet legalább 00 Ft-ot, így marad neki 0 00, Ft-ja. Nem érdemes erre az idõre a pénzét bankba tennie. 0. a) év múlva: 0 000,0 = 000 Ft év múlva: ( ),0 = 00 Ft év múlva: ( ),0 = 0, Ft év múlva: ( ,),0 = 90, Ft-ja lesz négy év múlva. b). év végén Ákosnak 90, Ft-ja van, miután itt már nem takarékoskodik, csak bent tartja pénzét a bankban: ,0 = 008, Ft-ja lesz. Rejtvény: 0%-ában csak a vezetõ ült az autóban. Ennek 0%-nak a 7%-ában vezette férfi. Vagyis: 0, 0,7 = 0, % Az összes személyautó %-ában utazott pontosan férfi.

16 . A hatványozás SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. a) = = 9 b) = = c) 7 = = d) 0 = = e) = = f) = = g) 8 = = 09 h) 000 = 000. a) kettõ a hatodikon b) három az ötödiken c) 0, nulla egész egytized a harmadikon d) (µ) mínusz négy a negyediken e) öt a hatodikon f) 7 hét a negyediken. 9 =. a) b) c) d) e) f) 807. a) = ; = ; = 8; = = < < b) = 8; = 9; (µ) = µ8; (µ) = 9 (µ) < < = (µ) c) = ; ( ) = ; ( ) = ; = < = ( ) < ( ) d) = ; Ê ˆ Ë = ; Ê ˆ Ë = ; ( ) = Ê ˆ Ë < Ê ˆ Ë < = ( ). a) 0 00 >b) 00 0 < 0 0 c) 0 00 < A = Ê ˆ = < = = Ë 9 8. = 8, (µ) = ; µ = µ; (µ) = µ µ < (µ) < (µ) < 9. a) Legkisebb: ; ; ; Legnagyobb: b) -féle c) = = = < < < = < < < = < < < < 0. a) Legkisebb: = = = = = Legnagyobb: b) >c) -féle d) 8-féle

17 . 00-ban: ben: 000 0,88 = 00 faj 00-ben: 00 0,88 = 87 faj 00-ban: 87 0,88 = 07 faj 007-ben: 07 0,88 = 998 faj 008-ban: 998 0,88 = 8 faj 009-ben: 9 0,88 = faj 00-ben: 0,88 = 0 faj. 0 perc elteltével: 0 = 0 h = 0 perc elteltével: 0 Nem lehetséges, hogy egy baktériumból osztódással óra elteltével 0 db legyen, mivel közben el is pusztul valamennyi.. a) 7%-os az éves kamat b)» 0 Ft-ot (0,7 Ft) c) 0 000,08» 89 Ft-ot. a) 0 = = = = 8 = = = 7 = 8 8 = 9 = A. hatvány 8-ra, a 0. hatvány -re, a 0. hatvány -ra, 007-dik hatvány 8-ra végzõdik. A szabályt a -es maradék adja, a kitevõ -gyel osztva mennyi maradékot ad. Azonos maradékok esetén a hatvány értéke ugyanarra a számjegyre végzõdik. b) = = 9 = 7 = 8 = = 79 7 = 87 8 = 9 = 9 8 A. hatvány 7-re, a 0. hatvány 9-re, a 0. hatvány -re, a 007-dik hatvány 7-re végzõdik. A szabályt a kitevõk -es maradéka adja. Azonos maradékok esetén a hatvány értéke ugyanarra a számjegyre végzõdik. 7

18 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE c) = = = = = 0 = 09 7 = 8 8 = 9 = A. hatvány -re, a 0. hatvány -ra, a 0. hatvány -ra, a 007-dik hatvány -re végzõdik. A szabályt a kitevõk -es maradéka adja. Azonos maradékok esetén a hatvány értéke ugyanarra a számjegyre végzõdik. d) = = = = 9 = 777 ármely kitevõ esetén az eredmény -ra végzõdik. Rejtvény: ( ) = = ( ) = = ( ) = ( ) 7. Mûveletek azonos alapú hatványokkal. a) b) c) d) 9 e) 8 f). a) µ = µ b) µ = µ c) = d) µ = µ8 e) µ 7 = µ8 f) (µ) =. a) = 7 b) = c) 7 = 9 d) = e) 9 = 9 f) 0, = 0,000. A = ; = µ; C = ; D = µ = D < A = C. a) 7 < b) >c) 7 > µ(7 ) d) =. a) = 09 b) = c) d) 0, 0 e) 0 f) a) b) c) d) µ7 e) 0, f) 0 8

19 Rejtvény: x = Y = Z x = 8 x = Ô x = Ô A százlábúnak 8 lába nem fáj. 8. Mûveletek azonos kitevõjû hatványokkal. a) = 7 b) 0 = c) = d) = a) b) c) d) a) b) Ê ˆ Ë = Ê ˆ Ë = = Ê 7 8 ˆ 00 = Ë c) d). a) b) Ê ˆ – = Ê ˆ – Ë 7 Ë Ê ˆ 8 = Ê ˆ 78 = Ë Ë = ( ) = ( ) = = = 79 9 ( ) = ( ) = = = c) Ê 7 Ë Á ˆ = Ê Ë Á ˆ 7 9 = = 79 d) Ê Ë Á ˆ = Ê Ë Á ˆ = Ê ( ) Á Ë ˆ 0 7 = Ê Ë Á ˆ = ( ) =. a) ( ) < ( ) < b) ( ) < ( ) ( 7 ) = < ( ) = 8 9

21 7 7 b) Legkisebb: 7 = Számlálóba a lehetõ legkisebb kitevõt írjuk, a nevezõbe pedig a legnagyobbat. 7 7 Legnagyobb: 7 = A számlálóba a legnagyobb hatványkitevõt írjuk, a nevezõbe pedig a legkisebbet. c) Legkisebb: = Ô = Ö = Legnagyobb: = 7 Ô = Ö = d) Legkisebb: ( ) = Ô = Ö = Legnagyobb: ( ) = 9 Ô = Ö = Rejtvény: A legnagyobb szám: () = 9. Prímszámvadászat. A 007 összetett szám és páratlan. Páratlan számot egy páros és egy páratlan összegeként kaphatunk. Ha egy szám páros, akkor osztható kettõvel, azaz nem prím, kivéve a kettõt. Ha az egyik prímszám a lenne, akkor a másik szám a 00, ez pedig nem prím szám. Tehát nem írható fel a 007 két prímszám összegeként.. a) 0-nél kisebb prímek: ; ; ; 7 Lehetséges szorzatok -et hozzáadva: + = 7 + = 7 + = + = 7 + = 7 + = különbözõ számot kapunk. b) Az eredmények közül prímek: 7;. a) = 7 b) 70 = c) 00 = d) 7 =. a) (; ) = b) (8; 0) = 8 c) (; ) = = d) (; 0) =. a) [; 8] = = b) [8; 0] = = 0 c) [; ] = = 0 d) [; ] = =. a) ( ; ) = = [ ; ] = = 0 b) (7 ; 7 ) = 7 [7 ; 7 ] = 7 = 9 08 c) ( 7 ; 7 ) = 7 = 9 [ 7 ; 7 ] = 7 = 8 7

22 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE d) ( 7; 7 ) = 7 = [ 7; 7 ] = 7 = ( ) 7. a) = = b) 0 ( ) 0 ( ) c) = = d) 00 ( ) ( ) = ( ) 7 = 7 ( 7) = ( 7) = 0 8. a) b) c) 8 + = 7 + = + = = + = = + = 0 = + = = d) + = + = + = Relatív prímek: (; 7); (7; 0); (7; 0); (; 0); (; ) 0. [; 0] = = 0 Indulástól számítva 0 perc, azaz óra múlva, reggel órakor indulnak ismét el egyszerre a buszok.. [; ] = A két hajó az indulástól számítva hónap múlva indul el ismét együtt a kikötõbõl.. [; 8] = [; 8] = [; 8] = [; 8] =. (x; ) = [x; ] = x = = 0. a) ( y ; x ) = z x = y = z = b) [ x ; y ] = z x = y = z =. ( ; x) = Legkisebb kétjegyû szám: 8 Legnagyobb kétjegyû szám:

23 Rejtvény: Legidõsebb: 7 éves Középsõ: éves Legfiatalabb: éves 0. Nagyon nagy számok. a) db százas b), 0 = 0 = E + Sz + t + 0 e c) 8,87 0 = 887 = 8 TE + 8 E + 7 sz + t + e d), 0 = = SZE + TE + E + sz + t + e. a) =, 0 b) 00 =, 0 c), =, 0 d), =, 0. a) 0 0 = 0 b), 0 =, 0 c), 0 =, 0 7 d) 0 0 = 0 e) millió =, 0 7. a) 7797 =, b) c) Egy személy rekordja:,0 0 Csapatrekord:, d),7 0 db Város Tokió Mexikóváros New York. a) 0 =, 0 b) 0 9 =, 0 0 c) 0 7 =, 0 8 d) 0 0 =, 0. a) 0 b) 0 c) 0, 0 = 0 d), 0 7. a) = 0 8 =, 0 9 b) (8 0 ) ( 0 ) = 0 Ország Elõvárosokkal Elõvárosok nélkül Japán Mexikó USA,97 0 7,9 0 7, , 0 8,89 0 8,897 0

24 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE c) = = 8,0 0 d) 8 0 µ 0 = = 7,9 0 e) 8. a) 0, 0 = 0, 0 7 =,0 0 8 b), 0 0 = 0 7 c) d) 9. a) 000 =, 0 b) 800 =,8 0 c) 700 =,7 0 d) = 8, 0 0. a) ( 0, 0 ) = 0 =,7 0 b) (8 0 ) = 09 0 =, c) d) Ê 000ˆ Ë 00 Ê 000ˆ Ë 0. a) km = 8 0 km =,8 0 7 km b) km = km =, km c), km =,9 0 9 =,9 0 0 km d),9 0 0 = 9, km = 9,08 0 km. magasság = M = mm T = 00 km = 0 mm V = M T alap = mm 0 mm = 0 mm = 0 8 dm = 0 8 (l). a) Fény s alatt km-t tesz meg, év alatt 9,08 0 km-t,, év alatt, 9,08 0 km = 9,7 0 km = =,97 0 km-re van ez a csillag a Földtõl. km b) v = h s =,97 0 km s, 97 0 km t = = = 0, = 7, 7 00 v km h h h Az út 7,7 0 0 h-ig tartana. = 0 = 8 0 =, 8 0 = 0 7 = 80 = ( 8 0) = 09 0 =, 09 0 = 00 = 8 0

25 Rejtvény: ember karfesztávolsága kb., m Föld egyenlítõi kerülete kb. 00,79 km =, km =, m, m/, m»,7 0 7 = fõ Megközelítõleg,7 millió ember tudná körülölelni a Földet.. Vegyes feladatok. 7 + =. a) b) c) d) 0 = 0, = 0, = 08, = 0, < < < a) b) c) d) 7 Ê 0 ˆ 7 - Ë = -, 0 Ê0 ˆ : Ë = : - = - = 9-9 = 008 Ê ˆ - - : Ë = + = + = 7 7 = = Ê 7 ˆ - - Ë = = a) Ñ = b) Ó = c) Ò = µ0, d) Ð = 0,. a) (8, (l) +, (l)) (l) = 7,7 db db csupor lesz tele, a tizennyolcadikba (l) = (l) méz kerül. Az utolsó 0 7 csupor részéig telik meg. 0

26 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. a) b) c) d) < < 0 = < - < >9 0, 0, < , < - >= 9 = 7. a) Ò = 8 Ó = 8 Ñ = 7 8 b) Ò =- 8 Ó =- 8 Ñ =- 8 c) Ò = Ó = Ñ = d) Ò =- Ó =- 0 Ñ = = 0 Az -ös számhoz áll a legközelebb = = = 0, 9. nap= óra alatt -ét szétosztotta. Hátra van még az -e, amihez óra szükséges. Az egész zsákot 8 óra alatt osztotta szét.

27 0. a) 79,+0,8 kj =, kj b),8+7+, kj = 0, kj c) 0,8+908 kj =,8 kj. Arányos téglalapok Y = X Æ X = Y X = Y Y = Y része. 9 arány 0 dl. dl szörphöz kell 9 dl vizet adni. dl szörp van az üvegben.. téglalap X. téglalap Y. 8 fõ nap 8 óra/nap 8 : 8 fordított arány fõ nap,8 óra/nap : fordított arány fõ nap óra/nap órát kell naponta dolgozniuk, hogy elkészüljenek.. kendermagos tyúk nap 0 dkg mag kendermagos tyúk nap 0 dkg mag kendermagos tyúk nap 0 dkg = dkg magot eszik meg. gyöngytyúk nap 0 dkg mag gyöngytyúk nap 0 dkg mag gyöngytyúk nap 0 dkg = dkg magot eszik. + + = = dkg-ot esznek meg.. Felnõtt: 000-nek 8%-a: 000 0,8 = 00 fõ Férfi: 00-nak 0%-a: 00 0, = 0 fõ 0 fõ férfi volt az elõadáson.. 0 db 00 Ft db 00 0 = 0 Ft Árleszállítás után: db 0 0,8 Ft = 8 Ft 00 8 = db-ot vehetnénk az árleszállítás után. db-bal többet. 7. 0%-os kamat évente 000 Ft vissza 0 000. = 000 Ft = 000 Ft = Ft Akkor járunk jobban, ha 0%-os kamatra bankba tesszük a pénzt, így év után Ftunk lesz, míg ha évente 000 Ft-ot kapunk vissza, csak 000 Ft-unk lesz. X Y 7

28 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE 8. a) b) c) d) nincs a kártyák között ilyen e) 7 9. Nem igaz, például. 0. Legkisebb: µ0. a) Ò = b) Ó = 9 c) Ð = d) Ô =. = = D = F. a) b) c) d) A = Ê ˆ Ë C = Ê ˆ Ë E G = Ê – Ë = Ê – Ë. a) Egy sorban, oszlopban, átlóban a hatványkitevõk összege vagy nagyobb legyen. Több megoldás lehetséges. b) Lásd a) c) A kitevõk összege 0 vagy nagyobb legyen a) b) c) Ò ˆ ˆ = < D = Ê ˆ Ë 7 = - < F = Ê ˆ - Ë = < H = Ê ˆ 8 Ë 9 = < = = = = = Ò 7 9 Ò Ò= 7. [8; ] = s múlva ugatnak egyszerre. Ò = 7. [0; 8] = 0 0 s múlva hallhatjuk újra, hogy a két csepp egyszerre csapódik be. 7. a) 7, 0 9 t = 7, 0 kg b) 8 7, 0 kg = 9,78 0 kg =,978 0 kg Ò = 8

29 . Algebrai kifejezések. Algebrai kifejezés. a) x+ b) x c) x µ x d) e) µx f). y + x a felsoroltak közül nincs megfelelõ szakasz x + y a) a megfelelõ szakasz x + y c) a megfelelõ szakasz x + y b) a megfelelõ szakasz x + y d) a megfelelõ szakasz x + y e) a megfelelõ szakasz. a) p + q b) p + pq c) p q d) (p + q). A.;.; C.; D.; E.. a) 8 s + b b) b s + 8. k µ 0,k = 0,7k Ft-ba kerül a kabát. 7. f k 0 8. a) x m b) x m µ y ü 9. k a b dl üdítõ jut egy pohárba. k – a 0. A szárak hossza. a) Kati most háromszor annyi idõs, mint amennyi Matyi volt b évvel ezelõtt. Hány évesek most? b) Kálmán most kétszer annyi idõs, mint amennyi d évvel ezelõtt Peti volt. Most hány évesek?. a + b = b + a (a + b) + c = a + (b + c) a b = b a (a b) c = a (b c) Rejtvény: x 9

30 . ehelyettesítés SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. a) Vegyük észre, hogy = F és C = E. a = helyettesítés esetén A = 8 = C = µ D = µ8 E = µ F = a = µ helyettesítés esetén A = = µ C = D = µ E = F = µ a =, helyettesítés esetén A =, = µ, C =, D = µ, E =, F = µ, a = helyettesítés esetén A = = – C = D = – E = F = – b) Vegyük észre, hogy A = E és C = F. b = helyettesítés esetén A = = C = D = E = F = b = µ helyettesítés esetén A = µ = C = µ D = µ E = µ F = µ b = helyettesítés esetén A = 8 = C = D = E = 8 F = b = helyettesítés esetén 9 A = = C = D = E = F =. x µ, µ µ µ0, 0 0,, xµ µ9, µ8 µ µ, µ µ0,, µ x x µ x µ 8 µ µ 7 µ µ µ µ µ µ µ µ µ µ µ µ µ µ0, µ 0 µ 0

31 y 8 7 x a) x+ y =, x + y = x µ y = 0, µ = µ7, x y = b) a µb + = = – – = – 7 b µ a µ = µa + b + = µb µaµ = 0. Az a b µ algebrai kifejezés a = 0 és b = µ helyen vett helyettesítési értéke µ. Az a b µ algebrai kifejezés a = µ0, és b = helyen vett helyettesítési értéke 0 µ, = – – = Az a b µ algebrai kifejezés a = és b = µ helyen vett helyettesítési értéke µ. 9 ( -) – = – – = – Az a + b µ algebrai kifejezés a = 0 és b = µ helyen vett helyettesítési értéke µ. Az a + b µ algebrai kifejezés a = µ0, és b = helyen vett helyettesítési értéke 0,. Az a + b µ algebrai kifejezés a = és b = µ helyen vett helyettesítési értéke µ, ( – ) – = – = – = – Az aµb algebrai kifejezés a = 0 és b = µ helyen vett helyettesítési értéke. Az a µ b algebrai kifejezés a = µ0, és b = helyen vett helyettesítési értéke 0 µ0,. Ê ˆ – Ë 0 – = = – 0

32 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE Az aµb algebrai kifejezés a = és b = µ helyen vett helyettesítési értéke. a) 0 b) 7 c) 97 d) 7. A víz 00 C-on forr, ez Fahrenheit-fok, és 0 C-on fagy meg, ez Fahrenheit-fok = + = = Þ k + t 8. a) x µ µ 0, 0 0, y µ µ µ 0 b) y = x µ c) 9. a + ; a 0. µ x; (µx) ; x;. a) b) c) µ d) 0 e) 9 f) g). a ÁÑ b = (a + b) ÁÑ 0, =, ÁÑ (µ,) = µ (µ) ÁÑ = µ, ÁÑ, =,. Háromféle lehet µ, 0,. 8 ilyen szám képezhetõ. Összegük. Rejtvény: A 7 házban összesen 9 macska megevett egeret. egér megevett 0 kalászt, melyekben összesen volt 807 szem. Ezek a számok a 7 hatványai = 9 07 x

33 . Mûveleti sorrend. a) 0 Ê x ˆ + Ë – 0 b) Ê00 Ë x ˆ + -. Vonjunk ki az y számból -et! Szorozzuk meg a számot -vel! Szorozzuk meg a számot -mal! Szorozzuk meg -tal! Vonjuk ki az -bõl! Adjunk hozzá -et! Adjunk hozzá -at! Osszuk el -mal! Vonjuk ki az -bõl! x +. a) – b),8 c) Szorozzuk meg a számot -mal! Adjunk hozzá -t! Osszuk el -tel! Vonjunk ki belõle -ot!. x µ µ µ0,. µ µ, 0, x µ x µ + + x µ + µ0,7 0, 0 µ0, 0,. 0, 0, ( ( ( (. C) és E) Ê p ˆ – r. a) + b) (q µ ) + 7 c) d) Ë 9 7. a) az a szám kétszeresébõl levonunk -et b) a b-nél -mal nagyobb számot elosztjuk kettõvel c) a c-nél -mal nagyobb számot szorozzuk -tel d) a d szám felét levonjuk az -bõl e) az e számot kivonjuk az -bõl, majd a különbséget kivonjuk a -bõl 8. n db 0 forintos 0 n forint, és ugyanennyit kell fizetni 0 darab n forintos áruért. 9. a) A= C és = F b) A = C és = E és D = F c) A = D és = E és C = F s + s 7 0. a) (x + ) b) x ( + ) c) (x + ) d) + (x )

34 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE Rejtvény: a + a + a µaµa= a (a µa) a+ a = a vagy a a a a a= a vagy a a a a a= a. Egytagú és többtagú algebrai kifejezések. a) x+ y + z = 0, x y z = µ b) x + y + z = = + = = = x y z = 0 0 c) x + y + z = µ x y z =. a) a + bc kéttagú algebrai kifejezés b) (a + ) (b + ) egytagú algebrai kifejezés. a) b) 7 = 8 c) d) Egytagú: b); többtagú: a) c) d).. Egytagú algebrai kifejezések: ) C) D) E) G). a) ( + x) ( + y); x ( + y); (x + ) y ( + x) y ( + x + ) y (x + + y) xy b) x + y + x + + y ( + x) + y x + y + xy. a) többtagú: 0k + p b) többtagú: 7q µ p m c) egytagú: d) egytagú: 0u a) p + q b) p µ q c) p + q 7 d) (p + q) e) p q f) p – q g) p h) p q i),p + (µ)q

35 8. a) b) µ c) d) e) f) µ g) h) 7 9. a) xy; xy; µ x y; (7 µ )xy; yx b) x z; xz; 0zx; xz; µ7zx c) x; µ7x; µ x; 9x; 8x d) xyz; x yz; x (µ7)yz; zyx; µzyx 0. A) ab ) ab C) b a D) b a E) ba F) ab G) ab H) a b. a) n + t b) k + t + a c) x + y µ z. a) ; ; ; ; 9; 8 b) ; ; ; ; ; 0; ; 0 c) ; ; ; ; ; 8; ; ; d) ; ; Minden algebrai kifejezés osztható az m és n természetes számokkal is. Rejtvény: Ilyen tulajdonságú a következõ egyenlet: + = + + = +. Összevonás egynemû kifejezések. a) 0 80 b) 80 c) 80 d) 0 e) f) a) 998 b) 999 c) 00 d) (µ007). a) b) 989 c) 0 d). n (7 + ) = 7 n + n =7 n. g + t + g + m + g + m + t = 7g + m + t. a) a b) b c) c d) µd 7. a) x b) y c) z d) d 0 8. A) ) C) E) 9. a) x + x + y + y = x + 8y b) x + x + µ 7 = x µ c) xy + xy µ x µ y = xy µ x µ y d) 7x µ x + x + x µ = x +7x µ 0. C) a kakukktojás. a) a µ + a + = a + b) b µ µ b + = b + c) c c + = c – d) 0,8d µ 0,7 +,d µ 0, = d µ

36 . A) = D) C) = F) SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. Ez az 998, hiszen valamely szám duplájából levonva a számot visszakapom az eredetit.. x – x – x = 7 A hónap. hetéig elköltötte a novemberi zsebpénzének a zsebpénzének 8 része. Ezek szerint marad elegendõ pénze, hogy megvegye a könyvet.. A gondolt szám tízszerese lesz egyenlõ 80-nal. Zsolti a 8-ra gondolt. részét. Megmaradt a. A kapott szám: 0c + c =c, ami biztosan osztható ; ; ; 8; ; c; c; c; 8c; c. 7. a) x +( µ x) = µ x b) µy + (µy µ ) = µy µ c) (z + ) µ z = z + d) ( µ x) + x = + x e) y µ (y + ) = µ f) z µ ( µ z) = z µ g) x + µ (µ + x) = x + h) µ (µx µ ) + x = + x i) µ(y µ ) + y µ = y + j) + (z µ ) µ ( µ z)= µ + z Rejtvény: 8 = > = 8 8 x – 7x – x 8x 8 = = x aµ b+c aµc a+b a+ bµ c a aµb+c aµb a+c aµc+b. Egytagú algebrai kifejezések szorzása, osztása. a) (, ) =9 b) q(,p) =,p q c) q(r p) = q r p. a) Négyféle téglalapot kaphatunk. b) A területe mindegyik téglalapnak azonos. c) Az a és b oldalú téglalap területe T = ab

37 . a) A terület a négyszeresére növekszik. b) A terület a hatszorosára növekszik. c) A terület változatlan marad. d) Hatod részére csökken a terület.. a) x b) x 7 c) µxy d) x. a) 0ab b) µ8ab c) 9ab d),ab. a) 7. b) (x y) = xy; ( x) y = xy; ( x) ( y) = 9xy 8. a) x b) µ0x c) x d) x 0 b 9. a) a b) µ c) µc d) µd 0. a) b) µ c) µb d) µc ab e) f) a. a) Közös tényezõ:. b) Közös tényezõ:. c) Közös tényezõik: x és az. d) Közös tényezõik: és az x.. a) x b) µ8y c) 0v d) z. a) -mal b) 0-zel c) -gyel d) µ-vel 7

38 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. a) A térfogata a nyolcszorosára növekszik. b) A térfogata a nyolcadrészére csökken. c) A térfogata a kétszeresére növekszik. d) A térfogata a felére csökken.. a) b) c) x ( y) 8 x y 8 8xy = = = xy (-y) ( x) ( -) y x = = xy 0, x ( x) x x x x = = = x. A) = ); D) = E) a a ac ab A) ) C) D) E) bc bc b c Rejtvény: szorosára változtatjuk vagy részére csökkentjük. ab c 7. Kéttagú algebrai kifejezés szorzása egytagúval. Kétféleképpen számolhatunk:. módszer: Egy családi csomagban + joghurt van összecsomagolva, így összesen ( + ) db-ot vásárolunk.. módszer: Összesen db banános és db epres joghurtot vásárolunk.. a) (8x + 8y) 0 takarmányt kell rendelni. b) (zx + zy) 0 = z(x + y) 0 = 0zx + 0zy takarmányt kell rendelni.. A z zacskóban zn narancsos, zm málnás és zc citromos ízû gumicukor van. Összesen: zn + zm + zc = z (n + m + c) cukor van a zacskókban.. Pontosan annyi víz fér még bele, amennyi abba az akváriumba tölthetõ, melynek alaplapja egy a és b oldalhosszúságú téglalap, és magassága m µ h cm.. a) a (b + c) Kis és nagy alakú füzetet vásárol Dorka az írószer boltban. Mindkét fajta füzetbõl a darabra van szüksége az iskolában. A nagy füzetek b Ft-ba, a kis füzetek c Ft-ba kerülnek. Hány forintot fizet? b) a (b µ c) Jázmin b darab könyvet kölcsönzött ki a könyvtárból. Ma visszavitte azokat, de kiderült, hogy csak c könyv kölcsönzési határideje nem járt le, és a többi után késedelmi díjat kell fizetnie, könyvenként a Ft-ot. Milyen összegû büntetést fog fizetni? 8

39 . a) (x + ) = x + 0 b) (µ) (x + ) = µx + (µ) = µx µ c) (y µ ) = 0y µ d) x ( µ x) = x µ x e) (µy) (y µ ) = µy µ(µy) = µy + y f) x (x µ y) = x µ xy g) y(xy + y) = xy + 8y h) xy(x + y ) = x y + xy 7. a) x + = x + b) c) x + – = – x – = – x + – ˆ Ë d) Így is lehet: x + Ê x ˆ c) – =- + Ë =- x – =- x + Ê – ˆ Ë x – Ê – ˆ d) – =- Ë =- Ê Ë Á – ˆ x x =- + x x – 8 x = + (-) x – – x – = = + (-x) 8. a) ( + x) = + x = x + b) (y + ) 7 = 7y + 7 = 7 + y 7 c) ( + b) a= a + ba = ab + a 9. T = (a + 8) b = ab + 8b T = ( + x) y = y + xy T = (b + c) = b + c Rejtvény: A szöveg utasításait követve a következõ algebrai kifejezéshez jutunk. Jelölje a születési dátumot 9xy. v. z. <[(0z + ) + v] + >+ xy = 0000z + 00v + xy +00 Ahol xy jelöli azt a kétjegyû számot, ami a születési év két utolsó számjegyébõl áll. Pl.: Ha 99. október -én születtél, akkor a végeredmény lesz. Vonjuk le ebbõl a 00-t. 09-ot kapunk. Válasszuk el ponttal egymástól a számjegyeket kettesével a következõ módon: Ez a születési dátumod angolul vagy németül, hiszen ezeken a nyelveken fordított sorrendben írjuk a napok, hónapok és évek számát. 9

40 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE 8. Kiemelés. A) =. ) =. C) =. D)-nek nincs párja.. a) 8x + = x + = (x + ) b) x µ 0 = x µ = (x µ ) c) x + y = 7 x + 7 y = 7 (x + y) d) 9x + = x + = (x + ) e) µ x = µ x = ( µ x) f) µx µ 9 = µx µ = µ (x + ) g) h). a) A kakukktojás az x µ. A többi összeget kiemeléssel szorzattá alakítva mindegyikben közös tényezõ lesz a x µ. b) A kakukktojás a y + 0x. A többi összeget kiemeléssel szorzattá alakítva mindegyikben közös tényezõ lesz a x + y.. a) b) c) d) x + = x + = ( x + ) x – = x – = ( x – ) a + = 8b + ( b + ) ( b + ) b + = = = c – ( c – ) ( c – ) c – = = = d + d +. a) m + n alakban írható fel a két szám összege. m + n = m + n = (m + n) Az összeg egy természetes szám háromszorosa, tehát osztható -mal. b) m + n alakban írható fel a két szám összege. m + n = m + 7n = (m + 7n) Az összeg egy természetes szám hatszorosa, tehát osztható -tal. c) m µ 8n = m µ n = (m µ n) A különbség egy természetes szám hatszorosa, tehát osztható -tal. d) 0m µ n = m µ n = (m µ n) A különbség egy természetes szám tizenötszöröse, tehát osztható -tel. 0 ( a + ) ( a + ) = = ( a + ) ( d + ) ( d + ) d + = = = ( d + ) ( d + ) d +

41 . a) a + b = (a + b) b) ab + bc + ac = (ab + bc + ac) 7. A feladat utasításait követve a következõ algebrai kifejezés írja le, mi történik a gondolt számmal. Jelöje x a gondolt számot. x + + x – = x Ha a tört számlálójában elvégezzük az összevonást, egyszerûsíthetünk -mal. x + – = ( x + ) – = x + – = Eredményül azt a számot kaptuk, amire Kristóf gondolt. x 8. ( a + b) + ( b + c) + ( c + a) a + b + c ( a + b + c) ( a + b+ c) = = = a + b + c a + b + c a + b + c a + b+ c = 9. A 8. feladat alapján könnyen belátható, hogy a ; és összege a három keresett szám összegének kétszeresével egyenlõ. (a + b) + (b + c) + (c + a) = a + b + c = (a + b + c) A három szám összege 9. Rejtvény: Jelölje a a bal kezedben lévõ érmék számát, akkor a maradék a jobb kezedben 9 µ a darab. A kijelölt szorzásokat elvégezve az alábbi algebrai kifejezés írja le az érmék számát. a + (9 µ a) = a + µ a = µ a Arra következtethetünk, hogy az eredmény éppen az eredetileg a bal kezedben lévõ érmék számával kevesebb -nél, vagyis -bõl az eredményt levonva kapjuk, hogy a bal kezedben mennyi érmét tartasz. 9. Vegyes feladatok. a) x + y b) x y c) x µ y d) e) (x µ y) f) + x y. c – e tábla marad a második nap után.. nap. nap x + y c µ e marad c µ e marad

42 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. A d diák menetjegye oda-vissza d 0. t Ft-ba kerül 0%-os kedvezménnyel. A kedvezményes jegyre jogosult f felnõtt menetjegye oda-vissza f 0. t Ft-ba kerül. Az n fõs társaságból n µ f µ d fõ teljes árú jeggyel utazik, ezen jegyek összesen (n µ f µ d) t Ft-ba kerülnek. (d 0, t + f 0, t + (n µ f µ d) t + n h) Ft-ot fizetnek összesen.. a) 0, b) 0 c) 8, d),. a) + (x x + ) = ( + x x) + = + (x x) + ; ( + x) x + ; + x (x + ); b) ( y) µ y + = ( y µ y) + ; (y µ y + ); (y µ y) + ; y µ (y + ); c) ( z + z) + = z + ( z) + = ( z) + z + = z + ( z + ) (z + ) z + ; (z + z) + ; (z + z + ); z + (z + ). A dobott számok összegének lehetséges legkisebb értéke: + = 7 7. A dobott számok összegének lehetséges legnagyobb értéke: + = 8 È Ê ˆ Î Í Ë – È – Ê Ë – ˆ Î Í – = È Ê 0 Ë – ˆ Î Í ÈÊ 8 Ë – 0ˆ Î Í = Ê 8 ˆ = – – Ë – Ê ˆ Ë = 0 = megoldás: [a µ(b µ c)] µ [(a µb) µ c] = [a µb + c] µ [a µb µ c] = a µb + c µa+ b + c = = c = = 8. Mindegyik esetben végtelen sok megoldás van. Pl.: a) b) c) a 0,a a a 0,a a a a 0,a 0,7a d) e) a a a a a a a a 9. a) xµ + x + x + = x b) y µ + y µ + y + y + + y + = y

43 0. a) K= 8a T = a b) K = 0a T = a c) K = b + a + c T = b (b + a) + a c. a) V= a b) V = a + a = a c) V= b (b + a) a+ a c = a b + a b + a c. a) µb, mert a három másik szorzat csak együtthatójában különbözik egymástól. b) ab, mert a másik négy kifejezés többtagú algebrai kifejezés. c) xy, mert a másik négy kifejezés többtagú algebrai kifejezés. d) xy, mert a többi kifejezés együtthatója. e) (8z), mert a többi kifejezésben a z együtthatója.. a) b). a) a + a + a(a + ) b) b b b. b ( + b). a) a + + (a µ) = b) b µ (b + ) + = = a + + a µ = a µ = b µ b µ + = b + c) c + µ (c µ ) = c + µ c + = c + d + ( d + ) d) d + = d + = d + d + = d + e e – e + ( e – ) e + e – e – e) + = = = f + f – f + – ( f – ) f + – f + f) – = = = =. a) K= ( + p) + 8 vagy K = (8 + p) + T = 8 ( + p) vagy T = (8 + p) b) K = (8 µ q) + vagy K = ( µ q) + 8 T = (8 µ q) vagy T = 8 ( µ q) c) K = p + 8p T = 8p p = 8p d) K = p + 8q vagy K = 8p + q T = 8p q = p 8q = 8p q 7. a) -szeresére b) -szeresére c) -szeresére d) -szorosára 8. (s t) v = (v s) t szótagból áll a vers. Lásd József Attila Kedves Jocó! címû versét. 9. ); C); F); G); H); J); I) 0. ); D); E); F); G); I) Ê + ˆ, Ë

44 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE 0. a) hamis b) igaz c) hamis f. ceruza Ft, ezért g Ft-ba g f gc : = db ceruza kerül. c c f. A három szorzótényezõt, amiket te választasz meg, rendre összeszorzom, majd a két osztóval elosztva kapok egy eredményt, jelölje ezt a szám Az elsõ öt mûvelet, amit a gondolt számmal elvégzel, helyettesíthetõ az a számmal való szorzással. Ha ezután a hatodik lépésben elosztod a gondolt számmal, újra visszakapod az elsõ öt mûvelet eredményét, azaz a-t. Miután hozzáadod a gondolt számot, könnyen következtethetek a kapott érték alapján az eredetileg gondolt számra, csak le kell vonnom az eredménybõl az a-t.. a) (0 + 7) t = 7t km-t tesznek meg együtt. Ê ˆ b) + Ë részét ássák fel együtt. 9 t

45 . Egyenletek, egyenlõtlenségek. Hogyan oldjunk meg feladatokat!. Zs + D = D Zs = D + D + + D = Zs Zs D + D = D =, kg. Zs =, + =, kg újságot gyûjtött.. nap = óra óra µ ór 0 perc = 8 óra 0 perc Ennek a fele lesz a nappal idejének hossza, vagyis 9 óra 0 perc. Mivel a nap 7 óra perckor kell, akkor 7 óra perc + 9 óra 0 perc = óra perckor nyugszik.. Menetjegy ára csak odaútra: m Helyjegy ára: h m + h = 800 m + h = 00 h m = h Tehát m + h = 00 így is írható m h h = 00 h + h = 700 Þ h = 0 Ft m = 00 Ft Helyjegy nélküli vonaton oda-vissza 00 Ft-ért utaznánk. D + V. = D = V + 0 D + V = 88 V V = 88 V + V = 8 V = 9 D = 9 Vác 9; Debrecen 9 pontot gyûjtött.. Kristóf: ( + ) = 7 Kristóf 7 éves.. Anna Zsuzsi x db x db x + x = 8 x = Zsuzsinak db, Annának db ötöse van. V D 0

46 7. Ha Csaba x percig volt pályán, akkor álint x percig. 90 = 0 perc. álint 0 percig; Csaba 0 percig játszott. 0. percben történt a csere. 8. áfonyalekvár mogyorókrém üveg ára: x Ft üveg ára: x Ft üveg ára: x Ft üveg ára: x Ft x + 9x = 00 x = 0 üveg áfonyalekvár 0 Ft, üveg mogyorókrém 90 Ft. 9. év = nap Hátralévõ napok x 00 földi nap telt el. Eltelt napok µ x x = µ x x = 0. Arany Ezüst ronz x x x + x + 0 x + x + x + x + 0 = 80 x = Arany: 90 fõ Ezüst: fõ ronz: 7 fõ. 7x µ 8 = 8 x = A gondolt szám a. születésnapján: x +. születésnapján: x + +,. születésnapján: x + +, +, µ = 7 x = 0 A. születésnapján az elõzõ évi 0 cm-nél cm-rel volt magasabb, azaz cm.. 0% = rész Róka Influenzában elpusztult 0 db = összes csirke része fi része: 80 : = 0 db. 80 összes csirke: x db maradék rész: influenza rész 0 db túlélõ rész Þ rész = 0 0 db A róka elvitt 0 db-ot. a) 0 db b) 80 db c) 0 db d) 00 db SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE

47 . evétel: maradék CD eladás bevétel része rész: internet mill. dollár turné A CD eladás utáni maradék része = millió dollár. Þ Internetbõl millió dollár. Þ CD eladás: = dollar evétel: = dollar A zenekar bevétele millió dollár volt. x = µ 000 x = Nagy úr Ft-ot keres. x 0. > + x = + x = x = Júniusban átlagosan mm csapadék hullott. 7. Én most: éves 0 év múlva: = 8 éves voltam, amikor az apám éves korkülönbség: év Az apa most: + = 70 éves 0 év múlva az apa 80 éves. x 8. > + + x = 0 A színésznõ most 0 éves x = 8 x = 0 Egy margarin tömege 0 dkg. év 0. = K = K N + K = K + N = K + a) banán kiwit ér. b) Ha N = K +, de = K, akkor N = K N = K tehát egy kiwi fél narancsot ér. év része = 0 év év A színésznõ életkora 0 év 0 év 7

48 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE Rejtvény:. Hogyan születnek az egyenletek?. Gábor: x µ = 0 x = x = 8 alázs: (x + ) = 8 x + = 8 x = Eszter: (x + 8) µ = (x + 8) = 8 x + 8 = 8 x = 90 µ 8 = 7. a) x = x = x = b) x µ = 8 x = 8 + x = 7 c) 0, x = 9 x = 9 0, x = 8 d) x + 7 = µ7 x = µ7 µ 7 x = µ e) 9x + = 9x = µ 9x = 99 x = 99 9 x = f) 8x µ = 99 8x = x = 0 x = 0 8 x = g) x + 7 = x = µ 7 x = µ x = µ x = µ h) 8 = x + x = 8 µ x = x = x = 7 i), +,x = 9,x = 9 µ,,x =, x =,, x = j) (x + ) = 7 x + = 7 x + = 9 x = 9 µ x = x = x = 8 k) (x µ ) + = ( x – ) = – x – = x = + x = l) (x µ 7) µ = 7 ( x – 7) = 7+ x – 7 = 0 x = + 7 x = 0 x = x + x + m) – = – =- + x + = x + = 9 x = 9 µ x = 7 x – x – n) – = = + x = x = x = 7 x – x – = x = + 7x – 7x – 7x – o) + = 0 = 0 – = 8 7x µ = 8 7x µ = 7x = 8 x = 8 7 x = 9 = 90 8

49 . A versenyzõ tömege: x kg. x µ 8 = 87 Þ x = x = x = x = 8 A versenyzõ tömege 8 kg.. a) x + x + = x = µ x = x = x = b) x µ µ x = 7 x = 7 + x = 7 x = 7 x = c) x + µ x x = x + = x = µ x = x = x = d) x µ x µ + x + 8 = 9 x + = 9 x = 9 µ x = 88 x = 88 x =. Karcsi gólyalábai: x cm; Karcsi x cm magas. x + x = 0 x =, Gólyalábak hossza:, cm Karcsi magassága: 7, cm. A túra hossza rész 0 km rész = 0 km Þ rész = km Þ A túra teljes hossza: km. 7. Vidor x Tudor x Szende x Szundi x Þ x + x + x + x + x + x + = Hapci x 0x = 0 Kuka x x = Morgó Szundi db palacsintát evett. 8. Citrom Vanília x µ x x µ + x = 07 x = 8 Vanília: 8 gombóc. Citrom: gombóc. 9. Napóleon Wellington lücher x fõ x fõ 000 fõ x x = x = Napóleon serege: fõ. Wellington serege: fõ. 9

50 0. x µ = 7 x = 8 Katinka oldotta meg helyesen az egyenletet.. a) µ ( + x) = – ( + x) = – + x = x = x = µ x = µ b) [ + (x µ )] µ 0 = c) d) + (x µ ) = ( x – ) = – (x µ ) = x – = x µ = x = + x = = x x + = 8 x = x – 7 = x = 8 x = 8 x µ 7 = x = + 7. a) Pl.: Egy szám -szereséhez -t adtam, így -ot kaptam. Melyik ez a szám? x + = x = 7 b) Gondoltam egy számot, elvettem belõle -at, a különbséget elosztottam -tal és hozzáadtam -hez, így -ot kaptam. Melyik számra gondoltam? x – + = x = c) Egy számhoz hozzáadtam a -szeresét, -szorosát, -szeresét, majd kivontam az eredménybõl -t, így 8-at kaptam. Melyik ez a szám? x + x + x + x µ = 8 x = Rejtvény: pl.: x µ µ x µ x = 0 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE = x + = 8 x = x – 7 = x [ + ( x – )] = + 0 x + = x + = 8 8 x – 7 = 8 x = – 8 x ( x – ) = x + = 8 = – 8 x = = 8 x – 7 = 0

51 . Mérlegelv I.. dkg 0, kg 0, kg 0, kg 00 kg = dkg = 7 dkg zacskó cukorka + dkg = 7 dkg Mindkét oldalról vegyünk el dkg-mot. zacskó cukorka = 7 dkg zacskó cukorka = 8 dkg. a) x+ = /µ b) x + 80 = 007 /µ80 x = 9 x = 77 c) x + = /µ d) + x = /µ e) + x = 0 /µ x = µ x = x = µ f) 7 = x + /µ g) x +, =, /µ, h) 0, + x =,0 /µ0, = x x = 0,8 x = 0,8. a) xµ = 9 /+ b) x µ = 9 /+ c) x µ 8 = µ /+8 x = x = x = d) µ + x = /+ e) µ + x = 0 /+ f) 9 = x µ /+ x = 9 x = = x g) x µ, = µ /+, h) µ, + x = 0, /+, x =, x =,8. a) x = / b) 8x = 9 / 8 c) 8x = / 8 x = x = x = d) 000x = / 000 e) x = 0 / f) x = µ x = 80 x = 0 x = µ g) µx = 7 / µ h) µx = µ8 / µ x = µ8 x = + x x x x. a) = 8 / b) = / 8 c) = / 9 d) = / 8 9 x = x = x = 9 x = e) x = 8 / f) x = / g) x = µ9 / 7 x = 8 = h) µ x = / µ 7 7 x = Ê 7 ˆ – Á =- Ë x = = x =-9 =-

52 . a) x + = /µ b) x + 7 = /µ7 c) + x = /µ x = / x = / x = 0 / x = x = x = d) x µ = /+ e) x µ 0 = 0 /+0 x = / x = 0 / x = x = f) 9 µ x = 7 /µ9 g) = 0x µ /+ µx = 8 / (µ) 0 = 0x / 0 x = µ = x h) 9 = + x /µ i) 8 = µ x /µ = x / = µx / (µ) 9 = x µ = x j) x + = /µ k) x µ = /+ x SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE = / x = / x = x = fi 8 l) µ x = 0 /µ µ x = µ / µ x =- Ê ˆ Ë – = a) x = x + 8 /µx b) x = x + /µx c) x + 7 = 0x /µx x = 8 x = / 7 = 9x / 9 x = = x d) x = x + /µx e) x = x µ /µx f) + x = 7x /µx x = / x = µ / = x / x = 7 x = µ = x g) x = 9 – x /+x h) x = – x /+x i) µ x = x /+x x = 9 / x = / = x / x = x = 9 = x 8. a) x + = x + 7 /µx b) x + = x + 9 /µx c) x + 8 = x + /µx x + = 7 /µ x + = 9 /µ x + 8 = /µ8 x = / x = / x = x = x = d) x µ = x + /µx e) x + = x µ 8 /µx f) x µ = x µ /µx x µ = /+ = x µ 8 /+8 µ = x µ /+ x = 9 = x / 8 = x / = x = x

54 SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. Mérlegelv II.. a) x µ + x + = b) + 9x µ 0 + x = 0 9x µ = /+ x µ = 0 /+ 9x = 7 / 9 x = / x = x = = c) x + + x + x µ = x + /ö.v. d) x µ µ x + 9 = 7 µ x /ö.v. 0x µ = x + /µx 7 µ x = 7 µ x /µ7 8x µ = /+ µx = µx /+x 8x = / 8 x = 0 / x = x = 0 e) x µ µ x = x + + x µ /ö.v. µ µ x = x µ 9 /+x µ = 7x µ 9 /+9 = 7x / 7 = x f) x µ x µ 9 = x + 8 µ x + /ö.v. 0x µ 7 = µx + /+x x µ 7 = /+7 x = / x =. µ x = 8 µ x /+x = 8 µ x /µ8 µ = µx / (µ), = x. 9x µ = 8 + x /µx x µ = 8 /+ x = / x =. Egy aranyrúd tömege: x kg. Aladár Elemér Jonatán x x x + x x + x + x + x =,8 x =, kg Egy aranyrúd tömege, kg.. Széchenyi atthyány x + x x + + x = 99 x = atthyány Lajos: éves volt. Széchenyi István: 7 éves volt.

55 . n oldalas legyen a novella. n + n + 8 = 0 /µ8 n = n = oldalas x x 7. a) + = b) x – x = x + x = / x – x = /ö.v. x = 90 / x = 8 x = / x = x = c) x x x x x + + = 8 /k.n. d) + = – /k.n. 0x x x x x /ö.v. / – x + + = 8 + = x x = 8 / = /+ x = x = 0 8. x = x x =, kcal Egy zsemle energiatartalma, kcal. 9. x x = x + x + 0 = x /k.n. /ö.v. 7x x / – 7 x + 0 = x 0 = / x = 0 = 8 8-as számú házban lakom = x 8 = x /

56 0. a) (x + ) µ x = b) x + ( µ x) = c) ( µ x) + = x µ µ x = /µ x + µ x = /ö.v. 0 µ x = x µ /+x µx = / (µ) µ x = /µ 0 = x µ /+ x = µ µx = / (µ) = x / x = µ = x d) µ (x + ) = x µ /z.bontás e) 000 µ (x + ) = 000 /µ000 µ x µ = x µ /ö.v. µ(x + ) = µ000 / (µ) µ x = x µ /+x x + = 000 /µ = x µ /+ x = 998 = x / = x f) 8x µ (x µ ) = µ (x µ ) /+(x µ ) 8x = / 8 x =. 7. évfolyam száma: x fõ. Aggtelek Hortobágy Veszprém Nem szavazott x x x x + x + x + = x x = 80 fõ A hetedik évfolyam 80 fõs. SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE. rigi Erika Pisti Zoli kg 7 kg 9 kg kg kg. x Ft x 7x 9x (x µ ) x + 7x + 9x + (x µ ) = 8 x = 7 Ft kg dinnye 7 Ft-ba került.. a) (x + ) + x = b) x + (x µ ) = 0 x + + x = /ö.v. x + x µ = 0 /+ x + = /µ x = / x = / x = x = = c) (x µ ) = (x + ) d) 9( µ x) = (x µ ) x µ = x + /µx 9 µ 9x = x µ 8 /+9x x µ = /+ 9 = x µ 8 /+8 x = 0 7 = x / = 7 = x

57 e) (x µ ) = (x µ ) f) ( µ x) = (x µ ) x µ = x µ /µx µ 0x = x µ /+0x x µ = µ /+ = x µ /+ x = 8 / 0 = x / x = x =. a) (x + ) µ 8 = (x µ ) µ x b) ( µ x) + = x µ x + µ 8 = x µ µ x /ö.v. µ x + = x µ x µ = x µ /µx 9 µ x = x µ /+x µ = x µ /+ 9 = 7x µ /+ 9 = x = 7x / 7 = x c) µ (x µ ) = (x µ ) µ x /z.b. d) (x µ ) µ (x µ ) = x + 9 /z.b. µ x + = xµ µ x /ö.v. x µ 9 µ x + 8 = x + 9 /ö.v. µ x = x µ /+x x µ = x + 9 /µx = 8x µ /+ x µ = 9 /+ 8 = 8x / 8 x = 0 = x. Áron Gergõ x Megmaradt pénz: – 00 < x + 00 Ê x ˆ - 00 x 00 Ë = + x = 00 Áron és Gergõ 00 Ft-ot kaptak külön-külön.. rokkoli Gomba x µ x x µ, = ( µ x) rokkoli: x = 0, kg Gomba:, kg 7. Ha Levente 00 Ft-tal kevesebbet visz, akkor Sanyinak kétszer annyi pénze van, mint Leventének. Vagyis: Sanyi pénze: (x µ 00). Zsuzsi Levente Sanyi x x (x µ 00) x + x + (x µ 00) = 00 x + x µ 00 = 00 /+00 x = 000 / x = 00 Levente: 00 Ft Zsuzsi 00 Ft Sanyi 800 Ft 0 = x 7

58 8. Anglia Új-Zéland Olaszország Skócia x + Angliából felírva: ; x x x + 0 x = + / x = x /µx x = / x = 08 Új-Zéland = 09 pontot szerzett. Rejtvény: Tanár Apa x évvel ezelõtt µ x 8( µ x) µ x = ( µ x) Most 8( µ x) 8( µ x) µ x = ( µ x) /+x 8( µ x) = ( µ x) + x /µ( µ x) ( µ x) = x 0 µ x = x /+x 0 = x x = 8 7 Apa most: 8 ( – 9) = éves.. Amit nem szabad elfelejteni: az egyenlet alaphalmaza. x ÎN 0 + SOKSZÍNÛ MATEMATIKA 7 A KITÛZÖTT FELADATOK EREDMÉNYE x + x + 7 x + a) = / b) = / c) =- / x + = /µ x + 7 = /µ7 x µ = µ8 /+ x = 0 ÎN x = µ ÏN x = µ ÏN x – x – – x d) = 8 / e) = / f) =-7 / x + = /µ x µ = 0 /+ µ x = µ /µ x = / x = / µx = µ / (µ) x = ÎN x = ÏN = x ÎN 8

59 . x ÎQ x – x x a) + = /µ b) – = /+ c) + = 8 /µ x – x x =- / = / = / x µ = µ /+ x + 7 = /µ7 µ x = /µ x = µ ÎQ x = 7 / µx = / (µ) x = 7 ÏQ x = – ÎQ d) x – x – – x + = x / e) + x = – / f) – x = / x µ + 8 = x x µ + x = µ /+ µ x µ x = 0 x + = x /µx x = µ / µ 7x = 0 /µ = x / x = µ ÎQ µ7x = / (µ7) = x ÏQ x = – 7 ÎQ. x ÏQ; x > x – x x + x + a) + = / b) + = / (x µ ) + x = x + + (x + ) = 0 /z.b. 9x µ + x = /+ x + + x + = 0 /ö.v. x = 8 / x + 8 = 0 /µ8 x = 7 ÎQ x > x = / x = ÎQ x > c) x – x – x + 7 x – + = x / 0 d) – = x – 7 / (x µ ) + (x µ ) = 0x /z.b. 7(x + 7) µ (x µ ) = x µ /z.b. 0x µ + x µ = 0x /ö.v. 7x + 9 µ x + = x µ /ö.v. x µ 7 = 0x /µx x + = x µ /µx µ7 = x / = x µ /+ – 7 = x ÎQ de x >/ = x / nem megoldás. Az iskola énekkara: x fõ. Szoprán Alt Mezzo 0 x = x = x 00 0 x x + x + = x 0 = x ÎQ x > megoldás x =, nem megoldás, mivel x-szel a gyerekek számát jelöltük és ez csak pozitív egész szám lehet. = 9

61 . Mikor érdemes egyenleteket használni?. A fiúk száma -gyel több a lányokénál. Lányok: x fõ; fiúk: x + fõ. Gabinak kétszer annyi fiútestvére van, mint lánytestvére. A testvérei száma: lány fiú x µ < x + (x µ ) = x + x = Þ x + = A családban lány- és fiúgyermek van.. x µ 700 = 700 µ x x = 0 db 0 db juha van a juhásznak.. Apa Fiú x x x µ >x µ x µ = (x µ ) x = 8 Az apa éves, a fiú 8 éves. x + 07, x + 8= x 7 x = 0 0-an jelentek meg az ügyeleten, ebbõl 0-at benntartottak kivizsgáláson, hazaengedtek 9-t. 8. évf. db 7. évf.. évf.. évf. tanár db db 8 db. megoldás: Az újságok száma: x db. megvette maradt 8. o. x x 7. o. x = x x – x = x. o. x – x = x 0 x 0 0. o. x = x 0 x – x = 0 0 x 80 az iskolaújság száma.

Comments are closed, but trackbacks and pingbacks are open.