Press "Enter" to skip to content

TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika

150000  1,0181 24 x-re rendezve: x   7761,00 . 29,73 Tehát havonta 7761 forintot kell fizetnie 24 hónapon keresztül.

Matematika Gyakorlo Es Erettsegire Felkeszito Feladatgyujtemeny 3 Megoldas / Matematika – Gyakorló És Érettségire Felkészítő Feladatgyűjtemény I-Ii-Iii, Cd Mellékletekkel – Jelenlegi Ára: 1 600 Ft

betűtípusok, gombok, linkek, ikonok, szöveg, kép, grafika, logo stb. ) felhasználása, másolása, terjesztése, továbbítása – akár részben, vagy egészben – kizárólag a Jófogás előzetes, írásos beleegyezésével lehetséges. Hortobágyi István – Marosvári Péter – Pálmay Lóránt – Pósfai Péter – Siposs András – Vancsó Ödön – Egységes Érettségi Feladatgyűjtemény – Matematika I. – ben új, kétszintű érettségivizsga- rendszer lép életbe, amely először a – ben középiskolai tanulmányokat kezdett tanulókat érinti. MATEMATIKA Gyakorló és érettségire felkészítő feladatgyűjtemény I. ( sárga) megoldások. matematika vagy fizika. matematika, fizika érettségi. Subject: Image Created Date: 6/ 2/ 4: 13: 33 PM. Egységes Érettségi Feladatgyűjtemény – Fizika megoldások? – Válaszok a kérdésre. Weboldalunk cookie- kat használhat, hogy megjegyezze a belépési adatokat, egyedi beállításokat, továbbá statisztikai célokra és hogy a személyes érdeklődéshez igazítsa hirdetéseit. Könyv Tankönyv, segédkönyv 5- 12 évfolyam Matematika Könyv 1 db E- könyv Antikvár Idegen nyelvű Hangoskönyv Film Zene Egységes érettségi feladatgyűjtemény – Matematika – Megoldások I. Érettségi feladatok és megoldások gyűjteménye történelemből ( –) Szerző: Fekete Bálint – Rigó BalázsFekete Bálint – Rigó Balázs Oktatás.

Matematika. Gyakorló és érettségire felkészítő feladatgyűjtemény III. (CD-melléklettel) – Online könyv rendelés – Kell1Könyv Webáruház

  • Mikortól hosszabbodnak a nappalok 2012.html
  • Kulcs soft könyvelő program vélemények
  • Matematika gyakorló és érettségire felkészítő fgy. 1.2.3. – Matematika – Széchenyi Antikvárium – Használt Könyv Webáruház

Matematika Gyakorlo Es Erettsegire Felkeszito Feladatgyujtemeny III Kek Small ocr – [PDF Document]

Ez az j feladatgyjtemny megrizte a rgi egyedlll geometria feladatgyjtemnynk rtkeit. A tananyag-feldolgozs mdja egyszerre teszi lehetv a kzpszint s az emelt szint rettsgire val felkszlst.

Matematika gyakorló és érettségire felkészítő fgy. 1.2.3. – Matematika – Széchenyi Antikvárium – Használt Könyv Webáruház

Valaki nem tudná linkelni a sokszínű matematika feladatgyűjtemény 11- 12 osztályos megoldását? Fájlok: Gyakorló és érettségire felkészítő feladatgyűjtemény megoldások III. kötet ( kék) Általam gyűjtött és/ vagy készített matematikai jegyzetek, képletek, dokumentumok, melyek szabadon letölthetőek. Ennek eredményeként három kötetet töltenek meg a megoldások. A feladatgyűjtemény és a megoldáskötet is segíteni próbál napjaink matematikaoktatásának abban a célkitűzésében, amelyet egy nemzetközi kutatócsoport így fogalmazott meg: ” Fejleszteni az egyénnek azt a készségét, hogy képes felismerni, megérteni, milyen. Sikeres egyetemi, főiskolai matematika és fizika zh- ra és vizsgára való felkészítés analízis, lineáris algebra, valószínűségszámítás témakörökből. Matematika MATEMATIKA Gyakorló és érettségire felkészítő feladatgyűjtemények megoldásai, Bolyai Matematika Csapatverseny 3- 8. osztály, Online Tudományos. Regisztráció; Elérhetőségeink; Rólunk. Sokszínű Matematika 9- 10. feladatgyűjtemény ( MS- 2323).

A Matematika Gyakorló és érettségire felkészítő feladatgyűjtemény III. nevű.

amelyhez a megoldások CD- mellékleten találhatók. A testnevelés érettségi vi zsgához ad. Az új, kétszintű érettségi vizsga előkészítése keretében, a középszintű matematikavizsgára való felkészülést szolgáló feladatgyűjtemény megoldás kötetét tartja kezében az olvasó. A megoldások leírásai változatos formában jelennek meg a kötetben. Egységes Érettségi Feladatgyűjtemény Matematika II. Gondolkodási műveletek Halmazok Logika Kombinatorika Gráfok Módszerek Algebra Számok, műveletek Hatvány, gyök, logaritmus Számelmélet Egyenletek, egyenlőtlenségek Függvények Geometria Síkgeometria Térgeometria Vektorok Trigonometria Koordináta- geometria Statisztika. Matematika 10- es tankönyv: 1. ; Matematika javítóvizsga, osztályozóvizsga. A matematika tantárgy osztályozó- illetve javítóvizsgája egy 60 perces írásbeli számonkérésből áll. Amennyiben a tanuló eléri a 12% – ot, de nem éri el az elégségeshez szükséges 30% – ot, akkor szóbeli tételt is húznia kell. Szerzői jogi védelem alatt álló oldal. A honlapon elhelyezett szöveges és képi anyagok, arculati és tartalmi elemek ( pl.

Egységes érettségi feladatgyűjtemény – Matematika – Megoldás – Iskolai / Tankönyvek – Apróhirdetés Ingyen

Matematika – Gyakorló és érettségire felkészítő feladatgyűjtemény I-II-III, CD mellékletekkel – Jelenlegi ára: 1 600 Ft

szeptemberében indult el az Újkor. hu történelemtanítással foglalkozó rovata, amelynek első cikke a és közti érettségi feladatok. Kiszolgáló oldali hiba történt! Korrelációs azonosító: – Státusz: 405 OK×. Státusz: 403 Részletek: Unauthorized access! A Matematika Szekció Vezetőjének köszöntője. Az alábbi néhány sorban arról olvashattok, mi is az a ” Matek Szekció” A Studium Generale felvételi előkészítő tanfolyamain három tantárgyat oktatunk: Matematikát, Történelmet és Közgazdaságtant. Fontosabb változások a Matematika érettségiben – től: 1. A korábbi szabályozáshoz képest a középszinten megkövetelt ismeretek nem haladják meg jelentősen az eddigieket ( a gráfok és a statisztika- valószínűség témakörében jelenik meg néhány új követelmény). feladatgyűjtemény – A kötetben a 12. évfolyam törzsanyagát feldolgozó 570 feladaton túl a rendszerező összefoglalás részben a teljes középiskolás tananyag áttekintéséhez kínálunk további 620 felkészítő feladatot, valamint 10 középszintű és 5 emelt szintű érettségi gyakorló feladatsort.

Matematika érettségi feladatgyűjtemény 3 megoldások

Vásároljon a webáruházban! Szépirodalmi, gyermek-és ifjúsági könyvek széles kínálata nagy kedvezménnyel, előrendelési lehetőséggel. Tankönyvek, szakmai tankönyvek, iskolai atlaszok, érettségire felkészítő kiadványok, szótárak is várják Önöket! Könyvesház Fiúk Kft. Mobil: (+36) 70 325 3001

Letöltés PDF Ingyen könyv letöltés Matematika – Gyakorlo es erettsegire felkeszito feladatgyujtemeny III. epub PDF Kindle ipad Szerző: Czapary Endre; Czaparyne; Reiman Istvan; Csete Laszlo; Csete; Hegyi Gyorgyne; Ivanyineharro Agota; Morvai Eva 328 Oldalak száma: 166 ISBN: 609001632816 Nyelv: Magyar Formátum: Epub, PDF Fájl méret: 13. 9 Mb Download Matematika – Gyakorlo es erettsegire felkeszito feladatgyujtemeny III. free book nieworknihidtitch14 81adinGEperfra90 Free download ebook PDF, Kindle, epub, mobi, iPhone, iPad, Android

Széchenyi Antikvárium Zalaegerszeg, Széchenyi tér 5. Telefonszámaink: 06-92/346-794 06-30/387-06-75 Email címünk: (kukac)gmail(pont)com Nyitva tartás: Keddtől-Péntekig: 9-13 és 14-17 Szombaton: 9-12

Visszalépés Visszalépés a keresési beállításaimhoz Hasonló hirdetések Hasonló keresések Egységes érettségi feladatgyűjtemény – Matematika – Megoldások III. – Eladó – Webáruházban kapható! Adatlap Ár: 2. 490 Ft Könyvkereső: Iskolai / Tankönyvek Feladás dátuma: 2021. 06. 19 Eddig megtekintették 2 alkalommal A hirdető adatai Könyvek rovaton belül a(z) ” Egységes érettségi feladatgyűjtemény – Matematika – Megoldás ” című hirdetést látja. (fent)

TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika

1 TIKMATEMATIKA ÉRETTSÉGI TÍPUSFELADATOK MEGOLDÁSAI KÖZÉP SZINT Statisztika A szürkített hátterű feladatrészek nem tartoznak az érintett témakörhöz, azonban szolgálhatnak fontos információval az érintett feladatrészek megoldásához! 1) Egy dolgozatnál az elérhető legmagasabb pontszám 100 volt. 15 tanuló eredményeit tartalmazza a következő táblázat: Elért pontszám A dolgozatok száma a) Határozza meg az összes dolgozat pontszámának átlagát (számtani közepét), móduszát és mediánját! (5 pont) b) A dolgozatok érdemjegyeit az alábbi táblázat alapján kell megállapítani! Pontszám Osztályzat jeles jó közepes elégséges 0-19 elégtelen Ennek ismeretében töltse ki a következő táblázatot! Osztályzat jeles jó közepes elégséges elégtelen A dolgozatok száma c) Készítsen kördiagramot az osztályzatok megoszlásáról! Adja meg az egyes körcikkekhez tartozó középponti szögek értékét is! (5 pont) a) Számtani átlag: b) Módusz: 100 Medián: (21 pont) Osztályzat Jeles jó közepes elégséges elégtelen A dolgozatok száma

2 c) jeles: 192 jó: 24 elégséges: 48 elégtelen: 96 elégtelen jeles elégséges jó Összesen: 12 pont 2) A fizika órai tanulókísérlet egy tömegmérési feladat volt. A mérést 19 tanuló végezte el. A mért tömegre gramm pontossággal a következő adatokat kapták: 37, 33, 37, 36,35, 36, 37, 40, 38, 33, 37, 36, 35, 35, 38, 37, 36, 35, 37. a) Készítse el a mért adatok gyakorisági táblázatát! b) Mennyi a mérési adatok átlaga gramm pontossággal? c) Mekkora a kapott eredmények mediánja, módusza? d) Készítsen oszlopdiagramot a mérési eredményekről! (4 pont) a) b) m(g) n(db) m 19 36,21 36,21 36 gramm c) Medián: 36 Módusz: 37

3 d) (4 pont) Összesen: 12 pont 3) Egy osztály történelem dolgozatot írt. Öt tanuló dolgozata jeles, tíz tanulóé jó, három tanulóé elégséges, két tanuló elégtelen dolgozatot írt. a) Hányan írtak közepes dolgozatot, ha tudjuk, hogy az osztályátlag 3,410-nál nagyobb és 3,420-nál kisebb? (10 pont) b) Készítsen gyakorisági táblázatot, és ábrázolja oszlop-diagrammal az osztályzatok gyakoriságát! (4 pont) c) A párhuzamos osztályban 32 tanuló írta meg ugyanezt a dolgozatot, és ott 12 közepes dolgozat született. Melyik osztályban valószínűbb, hogy a dolgozatok közül egyet véletlenszerűen elővéve éppen közepes dolgozat kerül a kezünkbe? a) Ha x tanuló írt közepes dolgozatot, akkor az átlag: x x x ,410 3, x 68,2 3,41x 73 3x 68,4 3,42x. (Szabad az egyenlőtlenséget a tört nevezőjével szorozni, mert az pozitív szám.) Az első egyenlőtlenségből: x 11,7 A második egyenlőtlenségből: 10,95 x Tehát 11 tanuló írt közepes dolgozatot. Ellenőrzés: így az átlag 106 3,419 31

4 b) jegyek tanulók c) Az eredeti osztályban A párhuzamos osztályban a közepes dolgozat kiválasztásának valószínűsége a valószínűség Tehát a párhuzamos osztályban nagyobb a közepes dolgozat kiválasztásának a valószínűsége. Összesen: 17 pont 4) Az alábbi adatok március első hetében mért napi hőmérsékleti maximumok (az adatokat C-ban mérték): hétfő kedd szerda csütörtök péntek szombat vasárnap 5,2 1,6 3,1 0,6 1,1 1,6 0 Mennyi volt ezen a héten a hőmérsékleti maximumok átlaga? 9,8 7, 14 Összesen: 2 pont 5) A 12. évfolyam tanulói magyarból próbaérettségit írtak. Minden tanuló egy kódszámot kapott, amely az 1, 2, 3, 4 és 5 számjegyekből mindegyiket pontosan egyszer tartalmazta valamilyen sorrendben. a) Hány tanuló írta meg a dolgozatot, ha az összes képezhető kódszámot mind kiosztották? b) Az alábbi kördiagram a dolgozatok eredményét szemlélteti: Adja meg, hogy hány tanuló érte el a szereplő érdemjegyeket! Válaszát foglalja táblázatba, majd a táblázat adatait szemléltesse oszlopdiagramon is! (6 pont) c) Az összes megírt dolgozatból véletlenszerűen kiválasztunk egyet. Mennyi a valószínűsége annak, hogy jeles vagy jó dolgozatot veszünk a kezünkbe?

5 a) Az összes képezhető kódok száma 5!. 120 tanuló írt dolgozatot. b) jegyek fok fő (4 pont) c) A 4-es és az 5-ös dolgozatok száma összesen: 70. A keresett valószínűség: , Összesen: 12 pont 6) Egy márciusi napon öt alkalommal mérték meg a külső hőmérsékletet. A kapott adatok átlaga 1 C, mediánja 0 C. Adjon meg öt ilyen lehetséges hőmérséklet értéket! (4 pont) Például: 2; 1; 0; 1; 7 (megfelel mindkét középértéknek). (4 pont) 7) Egy tanulmányi verseny döntőjében 8 tanuló vett részt. Három feladatot kellett megoldaniuk. Az első feladat maximálisan elérhető pontszáma 40, a másodiké 50, a harmadiké 60. A nyolc versenyző feladatonkénti eredményeit tartalmazza az alábbi táblázat: Versenyző sorszáma I. II. III. Összpontszám Százalékos teljesítmény a) Töltse ki a táblázat hiányzó adatait! A százalékos teljesítményt egészre kerekítve adja meg! Melyik sorszámú versenyző nyerte meg a versenyt, ki lett a második, és ki a harmadik helyezett? (5 pont)

6 b) A nyolc versenyző dolgozata közül véletlenszerűen kiveszünk egyet. Mennyi a valószínűsége annak, hogy 75%-osnál jobb teljesítményű dolgozat került a kezünkbe? c) Egy tanuló betegség miatt nem tudott megjelenni a döntőn. Másnap megkapta, és megoldotta a feladatokat. Eredményét később összehasonlította a nyolc döntős versenyző eredményével. Észrevette, hogy az első feladatot a versenyzők I. feladatra kapott pontszámainak a mediánjára teljesítette (egészre kerekítve), a második feladatot pedig a nyolc versenyző II. feladata pontszámainak a számtani közepére (szintén egészre kerekítve). A III. feladatot 90%-ra teljesítette. Mennyi lett ennek a tanulónak az összpontszáma? Ezzel hányadik helyen végzett volna? (5 pont) a) Versenyző sorszáma I. II. III. Összpontszám Százalékos teljesítmény (2+2 pont) 1. helyezett: 5. sorszámú versenyző; 2. helyezett: 4. sorszámú versenyző; 3. helyezett: 8. sorszámú versenyző. b) Mivel a 8 dolgozat között 4 darab dolgozat eredménye volt 75% felett, a keresett valószínűség: 4 0,5 50 % 8. c) Az I. feladat pontszámainak mediánja: 31,5 (ami kerekítve 32), a II. pontszámainak számtani közepe: ,875 8 (ami kerekítve 35) d) Az I. feladat pontszámainak mediánja: 31,5 (ami kerekítve 32), a II. pontszámainak számtani közepe: ,875 8 (ami kerekítve 35) III. feladat a 60 pont 90%-a: 54 pont. A megfelelő kerekítéseket elvégezve, összesítve pont, ami a 4. helyezést jelenthette volna. Összesen: 12 pont

7 8) Máté a tanév során 13 érdemjegyet kapott matematikából. Ezek időrendben: 4, 4, 3, 4, 4, 2, 5, 4, 3, 1, 3, 3, 2. Adja meg a jegyek móduszát és mediánját! Módusz: 4 Medián: 3 Összesen: 2 pont 9) Egy gimnáziumban 50 diák tanulja emelt szinten a biológiát. Közülük 30-an tizenegyedikesek és 20-an tizenkettedikesek. Egy felmérés alkalmával a tanulóktól azt kérdezték, hogy hetente átlagosan hány órát töltenek a biológia házi feladatok megoldásával. A táblázat a válaszok összesített eloszlását mutatja. A biológia házi feladatok megoldásával hetente eltöltött órák száma* Tanulók száma * A tartományokhoz az alsó határ hozzátartozik, a felső nem. a) Ábrázolja oszlopdiagramon a táblázat adatait! b) Átlagosan hány órát tölt a biológia házi feladatok megoldásával hetente ez az 50 tanuló? Az egyes időintervallumok esetében a középértékekkel (1, 3, 5, 7 és 9 órával) számoljon! Egy újságíró két tanulóval szeretne interjút készíteni. Ezért a biológiát emelt szinten tanuló 50 diák névsorából véletlenszerűen kiválaszt két nevet. c) Mennyi a valószínűsége annak, hogy az egyik kiválasztott tanuló tizenegyedikes, a másik pedig tizenkettedikes? (6 pont) d) Mennyi a valószínűsége annak, hogy mindkét kiválasztott tanuló legalább 4 órát foglalkozik a biológia házi feladatok elkészítésével hetente? (5 pont) a) Tanulók száma Órák száma

8 b) A középértékekkel számított átlag: 5,24 A tanulók tehát átlagosan 5,24 órát biológia házi feladatok megoldásával hetente c) 50 tanuló közül kiválasztani óra 14 perc töltenek a féleképpen lehet két tanulót A két évfolyamból 30, illetve 20-féleképpen lehet egy-egy tanulót kiválasztani, így a kedvező esetek száma: A kérdéses valószínűség: p d) Hetente legalább 4 órát 36 tanuló tölt a biológia házi feladatok megoldásával. Közülük két tanulót Így a keresett valószínűség: p féleképpen lehet kiválasztani. Összesen: 17 pont 10) Öt szám átlaga 7. Az öt szám közül négyet ismerünk, ezek az 1, a 8, a 9 és a 12. Határozza meg a hiányzó számot! Válaszát számítással indokolja! Legyen az ötödik szám x, ekkor x 5 7 x 5 Összesen: 3 pont 11) Rozi irodalomból a tanév során a következő jegyeket kapta: 2; 4; 3; 5; 2; 4; 5; 3; 5. Mi lenne az év végi osztályzata, ha az a kapott jegyek mediánja lenne? Az év végi osztályzat medián esetén 4. 12) A kézilabdaedzéseken 16 tanuló vesz részt, átlagmagasságuk 172 cm. Mennyi a magasságaik összege? A 16 tanuló magasságának összege: cm

9 13) Egy iskolában 120 tanuló érettségizett matematikából. Nem volt sem elégtelen, sem elégséges dolgozat. Az eredmények eloszlását az alábbi kördiagram szemlélteti. Hányan kaptak jeles, jó, illetve közepes osztályzatot? A jeles osztályzatok száma: 30. A jó osztályzatok száma: 50. A közepes osztályzatok száma: 40. Összesen: 3 pont 14) Számítsa ki a 12 és 75 számok mértani közepét! A mértani közép: ) Egy január elsejei népesség-statisztika szerint a Magyarországon élők kor és nem szerinti megoszlása (ezer főre) kerekítve az alábbi volt: Korcsoport (év) Férfiak száma (ezer fő) Nők száma (ezer fő) a) Melyik korcsoport volt a legnépesebb? A táblázat adatai alapján adja meg, hogy hány férfi és hány nő élt Magyarországon január elsején? b) Ábrázolja egy közös oszlopdiagramon, két különböző jelölésű oszloppal a férfiak és a nők korcsoportok szerinti megoszlását! (5 pont) c) Számítsa ki a férfiak százalékos arányát a 20 évnél fiatalabbak korcsoportjában, valamint a legalább 80 évesek között! (4 pont) a) A éves korcsoport volt a legnépesebb (2 893 ezer fő) ezer ( ) férfi és 5251 ezer ( ) nő élt az országban.

10 b) (5 pont) c) A 20 évnél fiatalabb férfiak száma 1214 ezer, a korcsoport lélekszáma 2372 ezer fő volt, tehát a férfiak százalékos aránya: ,, % A legalább 80 éves férfiak száma 75 ezer, a korcsoport lélekszáma 245 ezer fő volt, tehát a férfiak százalékos aránya: ,, % Összesen: 12 pont 16) Számítsa ki 25 és 121 számtani és mértani közepét! A számtani közép értéke: 73. A mértani közép értéke: 55. Összesen: 2 pont 17) Melyik az a legnagyobb szám az alábbi 12 szám közül, amelynek elhagyásával a megmaradt 11 szám mediánja 6? 6; 4; 5; 5; 1; 10; 7; 6; 11; 2; 6; 5 Az elhagyott szám: 5.

11 18) Az alábbi táblázat egy 7 fős csoport tagjainak cm-ben mért magasságait tartalmazza. Mekkora a csoport átlagmagassága? A csoport melyik tagjának a magassága van legközelebb az átlagmagassághoz? Anna Bea Marci Karcsi Ede Fanni Gábor Az átlag fogalmának helyes használata. Az átlag: Az átlagmagassághoz legközelebb Marci magassága van. 168, 3 cm. Összesen: 3 pont 19) Egy 17 fős csoport matematika témazáró dolgozatának értékelésekor a tanár a következő információkat közölte: Mind a 17 dolgozatot az 1-es, a 2-es, a 3-as, a 4-es és az 5-ös jegyek valamelyikével osztályozta. A jegyek mediánja 4, módusza 4, terjedelme 4 és az átlaga (két tizedes jegyre kerekítve) 3,41. Döntse el, hogy az alábbi állítások közül melyik igaz, illetve hamis! a) A dolgozatoknak több mint a fele jobb hármasnál. b) Nincs hármasnál rosszabb dolgozat. a) igaz b) hamis Összesen: 2 pont 20) Számítsa ki azt a két pozitív számot, amelyek számtani (aritmetikai) közepe 8, mértani (geometriai) közepe pedig 4,8. (12 pont) (Jelölje a két keresett számot x és y.) A számtani közép A mértani közép x y 2 x y 2,, x y 16 xy 23,04 y 16 x 16 x x 23,04, Az egyenletrendszerből adódó másodfokú egyenlet 2 x 16x 23,04 0 melynek gyökei x 1,6 és x 14, y1 14,4 és y 2 1,6, A két szám az 1,6 és a 14,4. Összesen: 12 pont

12 21) Megkérdeztek 25 családot arról, hogy hány forintot költöttek az elmúlt hónapban friss gyümölcsre. A felmérés eredményét mutatja az alábbi táblázat: (Az adatokat tekintsük pontos értékeknek!) a) Hány forintot költöttek átlagosan ezek a családok friss gyümölcs vásárlására az elmúlt hónapban? b) Ossza 1000 Ft terjedelmű osztályokba a fenti értékeket, kezdve a Ft, Ft stb. osztályokkal, és ábrázolja ezeknek az osztályoknak a gyakoriságát oszlopdiagramon! (5 pont) c) Az 500 Ft és a 9000 Ft kiugró értékek. (6 pont) Mennyi a megmaradt adatok átlaga, ha ezeket a kiugró értékeket elhagyjuk az adatok közül? Hány százalékos változást jelent ez az eredeti átlaghoz képest, és milyen irányú ez a változás? Mennyi az így keletkezett új adatsor terjedelme? (Az átlagot forintra, a százaléklábat két tizedesjegyre kerekítve adja meg!) d) Az eredeti mintát a vizsgálatot végző cég két új család megfelelő adatával bővítette. Az egyik az eredeti átlagnál 1000 Ft-tal többet, a másik ugyanennyivel kevesebbet költött havonta friss gyümölcsre. Mutassa meg számítással, hogy így az átlag nem változott! a) A 25 elemű mintában az elemek összege Így az átlag Ft b) Az 1000 Ft-os osztályokba sorolt adatok gyakorisági táblázata: Havi költség Ft-ban Családok száma

13 c) A két szélső adat elhagyásával az új átlag: 3996 Ft Mivel , , ezért az átlag 1,48% -kal csökkent. Az új adatsor legkisebb eleme 1200 Ft, legnagyobb eleme 6800 Ft, így terjedelme 5600 Ft. d) Az új átlag Összesen: 17 pont

14 22) Egy iskolai tanulmányi verseny döntőjébe 30 diák jutott be, két feladatot kellett megoldaniuk. A verseny után a szervezők az alábbi oszlopdiagramokon ábrázolták az egyes feladatokban szerzett pontszámok eloszlását: a) A diagramok alapján töltse ki a táblázat üres mezőit! Az első feladatra kapott pontszámok átlagát két tizedes jegyre kerekítve adja meg! 1. feladat 2. feladat pontszámok átlaga 3,10 pontszámok mediánja b) A megfelelő középponti szögek megadása után ábrázolja kördiagramon a 2. feladatra kapott pontszámok eloszlását! (4 pont) c) A versenyen minden tanuló elért legalább 3 pontot. Legfeljebb hány olyan tanuló lehetett a versenyzők között, aki a két feladat megoldása során összesen pontosan 3 pontot szerzett? (5 pont)

15 a) 1. feladat 2. feladat pontszámok átlaga 3,57 3,10 pontszámok mediánja 3,5 4 b) Egy tanulóhoz tartozó középponti szög: tanulóhoz 156, 6 tanulóhoz 72, 4 tanulóhoz 48, 3 tanulóhoz 36, 2 tanulóhoz 24 tartozik. c) Egy tanuló 3 pontot négyféleképpen érhetne el: 0 3; 1 2; 2 1; 3 0. A diagram alapján nem valósulhat meg: 0 3; pontot 1 tanuló kaphatott. 3 0 pontot 2 tanuló kaphatott. Legfeljebb 3 tanuló érhetett el pontosan 3 pontot. Összesen: 12 pont 23) Adja meg a 2; 11; 7; 3; 17; 5; 13 számok mediánját! A medián: 7. 24) Egy felmérés során két korcsoportban összesen 200 embert kérdeztek meg arról, hogy évente hány alkalommal járnak színházba. Közülük 120- an 40 évesnél fiatalabbak, 80 válaszadó pedig 40 éves vagy annál idősebb volt. Az eredményeket (százalékos megoszlásban) az alábbi diagram szemlélteti. a) Hány legalább 40 éves ember adta azt a választ, hogy 5-nél kevesebbszer volt színházban? b) A megkérdezettek hány százaléka jár évente legalább 5, de legfeljebb 10 alkalommal színházba? (4 pont) c) A 200 ember közül véletlenszerűen kiválasztunk kettőt. Mekkora a valószínűsége annak, hogy közülük legfeljebb az egyik fiatalabb 40 évesnél? Válaszát három tizedesjegyre kerekítve adja meg! (5 pont)

16 a) A legalább 40 éveseknek a 18,75%-a adta az idézett választ. 80-nak a 18,75%-a:. Tehát 15 legalább 40 éves ember adta az 5-nél kevesebbszer választ. b) A 40 év alattiak közül a legalább 40 évesek közül 80 0,375 30, azaz összesen 72 olyan ember van, aki évente 5 10 alkalommal jár színházba. Ez a szám a megkérdezettek 36%-a. 80 0,1875 c) Az összes lehetséges kiválasztás: 120 0,35 42, Ezek közül mindkét véletlenszerűen kiválasztott legalább 40 éves: esetben, különböző korosztályú: A kérdezett esemény valószínűsége: esetben Tehát 0,641 a valószínűsége annak, hogy legfeljebb egy 40 évnél fiatalabb van a kiválasztottak között. A feladat megoldható a komplementer esemény valószínűségének kiszámításával is. Összesen: 12 pont 25) Az alábbi táblázat András és Bea érettségi érdemjegyeit mutatja. András Bea Cili Magyar nyelv és irodalom 3 4 Matematika 4 5 Történelem 4 4 Angol nyelv 3 5 Fölrajz 5 5 a) Számítsa ki András jegyeinek átlagát és szórását! Cili érettségi eredményéről azt tudjuk, hogy jegyeinek átlaga András és Bea jegyeinek átlaga közé esik, továbbá Cili jegyeinek a szórása 0. b) Töltse ki a táblázatot Cili jegyeivel! Dávid is ebből az 5 tárgyból érettségizett, az 5 tárgy az ő bizonyítványában is a fenti sorrendben szerepel. Eredményeiről azt tudjuk, hogy jegyeinek mediánja 4, átlaga pedig 4,4 lett. c) Határozza meg Dávid osztályzatait és azt, hogy hányféleképpen lehetne ezekkel az osztályzatokkal kitölteni az érettségi bizonyítványát! (7 pont) Az ábra a 24 fős osztály érettségi eredményeinek megoszlását mutatja matematikából. Tudjuk, hogy jeles osztályzatot 4 tanuló ért el.

17 d) Az osztály tanulói közül hányan érettségiztek közepes eredménnyel matematikából? (4 pont) a) András jegyeinek átlaga 3,8, így jegyeinek szórása 3 3, , , 75 b) András jegyeinek átlaga 3,8, Bea jegyeinek átlaga 4,6. Mivel Cili jegyeinek szórása 0, ezért minden jegye azonos. Így Cilinek minden jegye 4-es. c) Dávid jegyeinek összege 22, jegyeit nagyság szerint sorba rendezve a középső 4-es. A jegyek között 1-es, 2-es és 3-as nem szerepelhet. Négy darab 4-ese nem lehet, mert akkor a jegyek összege nem lehet 22. Dávid jegyei: 4; 4; 4; 5; 5. Ezekkel a jegyekkel érettségi bizonyítványát féleképpen lehet kitölteni. d) Jeles osztályzatot az osztály 1 6 része ért el, a hozzájuk tartozó körcikk középponti szöge 60. A közepes osztályzatot elérőkhöz tartozó középponti szög az ehhez tartozó diákok száma:, vagyis közepes osztályzatot 7 diák szerzett., Összesen: 17 pont

18 26) Egy teherautóval több zöldségboltba almát szállítottak. Az egyik üzletbe 60 kg jonatánt, 135 kg starkingot, 150 kg idaredet és 195 kg golden almát vittek. A jonatán és az idared alma kilóját egyaránt 120 Ft-ért, a starking és a golden kilóját 85 Ft-ért árulta a zöldséges. a) Hány százalékkal volt drágább a jonatán alma kilója a goldenéhez képest? b) Mennyi bevételhez jutott a zöldséges, ha a teljes mennyiséget eladta? c) A zöldségeshez kiszállított árukészlet alapján számítsa ki, hogy átlagosan mennyibe került nála 1 kg alma! d) Ábrázolja kördiagramon a zöldségeshez érkezett alma mennyiségének fajták szerinti megoszlását! (6 pont) A jonatán alma mérete kisebb, mint az idaredé, így abból átlagosan 25%- kal több darab fér egy ládába, mint az idaredből. Rakodásnál mindkét fajtából kiborult egy-egy tele láda alma, és tartalmuk összekeveredett. e) A kiborult almákból véletlenszerűen kiválasztva egyet, mekkora a valószínűsége annak, hogy az jonatán lesz? (4 pont) 120 a) 1,41 85 Kb. 41%-kal drágább a jonatán alma b) Tehát Forint bevételhez jutott a zöldséges. c) Az összes alma mennyisége 540 kg Átlagos almaár: ,6 540 Tehát átlagosan 98,6 Forintba került egy alma. d) Az egyes almafajták mennyiségéhez tartozó középponti szögek: 60kg: kg: kg: kg: 130 Kördiagram: (4 pont) e) A kiborult jonatán és idared almák darabszámának aránya: 1,24:1 A keresett valószínűség: 1,25 5 0,56 2,25 9 Összesen: 17 pont

19 27) Egy gyümölcsárus háromféle almát kínál a piacon. A teljes készletről kördiagramot készítettünk. Írja a táblázat megfelelő mezőibe a hiányzó adatokat! Minden hiányzó adat megadásáért 1-1 pont jár: Alma fajtája A körcikk középponti szöge (fok) Mennyiség (kg) jonatán idared starking Összesen

20 28) Egy végzős osztály diákjai projektmunka keretében különböző statisztikai felméréseket készítettek az iskola tanulóinak körében. a) Éva 150 diákot kérdezett meg otthonuk felszereltségéről. Felméréséből kiderült, hogy a megkérdezettek közül kétszer annyian rendelkeznek mikrohullámú sütővel, mint mosogatógéppel. Azt is megtudta, hogy 63-an mindkét géppel, 9-en egyik géppel sem rendelkeznek. A megkérdezettek hány százalékának nincs otthon mikrohullámú sütője? (6 pont) b) Jóska a saját felmérésében 200 diákot kérdezett meg arról, hogy hány számítógépük van a háztartásban. A válaszokat a következő táblázatban összesítette: A számítógépek száma a háztartásban Gyakoriság Jóska felmérése alapján töltse ki az alábbi táblázatot az egy háztartásban található számítógépek számáról! (4 pont) A számítógépek számának átlaga A számítógépek számának mediánja A számítógépek számának módusza c) Tamás a saját felmérése alapján a következőt állítja: Minden háztartásban van televízió. Az alábbi négy állítás közül válassza ki azt a kettőt, amely Tamás állításának tagadása! A) Semelyik háztartásban nincs televízió. B) Van olyan háztartás, ahol van televízió. C) Van olyan háztartás, ahol nincs televízió. D) Nem minden háztartásban van televízió.

21 a) A mosogatógéppel rendelkezők számát jelölje x, a mikrohullámú sütővel rendelkezők számát 2x. Valamelyik géppel 141-en rendelkeznek:, amiből. Nincs mikrohullámú sütője megkérdezettnek, ők az összes megkérdezett kb. 9,3%-át jelentik. b) Az egy háztartásban található számítógépek számának átlaga: 2x x x , 57. A medián 2, a módusz 1. c) Az állítás tagadásai: C és D. Összesen: 12 pont 29) Kóstolóval egybekötött termékbemutatót tartottak egy új kávékeverék piaci megjelenését megelőzően. Két csoport véleményét kérték úgy, hogy a terméket az 1-től 10-ig terjedő skálán mindenkinek egy-egy egész számmal kellett értékelnie. Mindkét csoport létszáma 20 fő volt. A csoportok értékelése az alábbi táblázatban látható. a) Ábrázolja közös oszlopdiagramon, különböző jelölésű oszlopokkal a két csoport pontszámait! A diagramok alapján fogalmazzon meg véleményt arra vonatkozóan, hogy melyik csoportban volt nagyobb a pontszámok szórása! Véleményét a diagramok alapján indokolja is! (5 pont) b) Hasonlítsa össze a két csoport pontszámainak szórását számítások segítségével is! (5 pont) Kétféle kávéból 14 kg 4600 Ft/kg egységárú kávékeveréket állítanak elő. Az olcsóbb kávéfajta egységára 4500 Ft/kg, a drágábbé pedig 5000 Ft/kg. c) Hány kilogramm szükséges az egyik, illetve a másik fajta kávéból? (7 pont)

22 a) Az 1. csoporthoz tartozó diagram helyes. A 2. csoporthoz tartozó diagram helyes. A vizsgázó a két csoport adatait megfelelően megkülönböztette egymástól. Az első csoporthoz tartozó diagramon a nagy magasságú oszlopok (az átlaghoz közel) középen vannak, a másodikon pedig a két szélen; ez azt jelenti, hogy a második esetben nagyobb lehet a szórás. b) Az 1. csoport pontszámainak átlaga 6, szórása. A 2. csoport pontszámainak átlaga 6, szórása c) A 2. csoport pontszámainak szórása nagyobb. Az olcsóbb fajtából x kg-ot, a másikból 14 x kg-ot veszünk. A feladat szövege alapján felírható egyenlet: x x , 7 1, , x 5000x x 11,2 Az olcsóbb fajtából 11,2 kg, a drágább fajtából 2,8 kg szükséges a keverékhez. Ellenőrzés a szöveg alapján. Összesen: 17 pont 30) Egy kis cégnél nyolcan dolgoznak: hat beosztott és két főnök. A főnökök átlagos havi jövedelme Ft, a beosztottaké Ft. Hány forint a cég nyolc dolgozójának átlagos havi jövedelme? Az átlagos jövedelem Ft. 31) Réka év végi bizonyítványában a következő osztályzatok szerepelnek: 4; 2; 3; 5; 5; 4; 5; 5; 4. Adja meg Réka osztályzatainak móduszát és mediánját!

23 A módusz 5, a medián 4. Összesen: 2 pont 32) Az egyik világbajnokságon részt vevő magyar női vízilabdacsapat 13 tagjának életkor szerinti megoszlását mutatja az alábbi táblázat. a) Számítsa ki a csapat átlagéletkorát! Jelölje A azt az eseményt, hogy a csapatból 7 játékost véletlenszerűen kiválasztva, a kiválasztottak között legfeljebb egy olyan van, aki 20 évnél fiatalabb. b) Számítsa ki az A esemény valószínűségét! (8 pont) A világbajnokság egyik mérkőzésén a magyar kezdőcsapat 6 mezőnyjátékosáról a következőket tudjuk: a legidősebb és a legfiatalabb játékos életkorának különbsége 12 év, a játékosok életkorának egyetlen módusza 22 év, a hat játékos életkorának mediánja 23 év, a hat játékos életkorának átlaga 24 év. c) Adja meg a kezdőcsapat hat mezőnyjátékosának életkorát! (7 pont) a) Az életkorok átlaga: , 23év b) (A 13 játékosból 9 olyan van, aki 20 évnél idősebb, így) azoknak az eseteknek a száma, amikor nincs a kiválasztott 7 játékos között 20 évnél fiatalabb: Azoknak az eseteknek a száma, amikor egy játékos 20 évnél fiatalabb (és 6 játékos 20 évnél idősebb): Az A esemény bekövetkezése szempontjából kedvező esetek számát a fenti két szám összege adja: Az összes esetszám: 13 7 A kérdéses valószínűség: PA ( ) , 2168.

24 c) (A legidősebb és legfiatalabb játékos életkorának különbsége csak egyféleképpen lehet 12 év, ha) a legidősebb játékos a legfiatalabb pedig éves. a1 19 a6 31, A móduszból következik, hogy a játékosok közül ketten Mivel hat játékos van, ezért a medián számtani közepe, azaz az egyik a4 24 játékos Az átlagból következik, hogy vagyis ez a játékos csapatban). a és a 3 4 a2 és a3 22 évesek. éves (és ilyen korú játékos valóban van a csapatban). 118 a a5 26 éves (és ilyen korú játékos valóban van a Összesen: 17 pont

Comments are closed, but trackbacks and pingbacks are open.